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Abstract

On arbitrary topological groups a natural finitely additive measure can be
defined via compactifications. It is closely related to Hartman’s concept
of uniform distribution on non-compact groups (cf. [Ha]). Applications to
several situations are possible. Some results of M. Paštéka and other au-
thors on uniform distribution with respect to translation invariant finitely
additive probability measures on Dedekind domains are transfered to more
general situations. Furthermore it is shown that the range of a polynomial
of degree ≥ 2 on a ring of algebraic integers has measure 0.

1 Introduction

A sequence x = (xn)n∈N of integers xn ∈ Z is called uniformly distributed
if it is uniformly distributed mod m on each of the finite rings Zm = Z/(m),
(m) = mZ. To this concept there corresponds a finitely additive measure on a
certain subsystem of the power set of Z. It is the completion of the system of
finite unions of remainder classes of the form k+(m) with respect to the finitely
additive probability measure µ generated by the requirement µ(k+(m)) = m−1.
There is a vast literature on generalizations of these concepts to more general
classes of rings R (cf. references). Instead of (m) ⊆ Z one considers ideals I�R
(I�R if the inclusion is strict) with finite index #R/I and assigns to the classes
r + I the measure (or norm) (#R/I)−1, cf. [P1], [P2], [P-T1].

Here we continue such investigations but take the following point of view.
To each family Ij , j ∈ J , of ideals with finite index (norm) there corresponds
an embedding

ι : R→
∏

j∈J

R/Ij , r 7→ (r + Ij)j∈J ,

of R into a compact topological ring. Let C = ι(R) be the topological closure
of ι(R) which is again a compact topological ring. C has a natural measure
theoretic structure given by the Haar measure µ on the compact group (C,+).
For the theory of uniform distribution the suitable concept of measurable sets
is that of µ-continuity sets M which are defined by the property µ(∂M) = 0 for
their topological boundary ∂M . The preimages ι−1(M) of µ-continuity sets M
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form a set algebra (in general not a σ-algebra) which coincides with the system
of measurable sets from the first paragraph if all ideals with finite index occur in
the product. This is one part of Theorem 4 which also asserts that the measures
induced by both constructions coincide.

Note that the embedding ι is not necessarily injective. As an example take
any infinite field F , where the only ideal with finite index is F itself. Hence
the embedding is the trivial map onto the one element ring and the concept is
trivial.

By Pontrjagin’s duality (for the structure theory of locally compact abelian
groups cf. [He-R]) this cannot happen if one considers compactifications of the
additive group. In terms of projective properties one may compare compactifi-
cations in such a way that there is a maximal compactification, the well known
Bohr compactification. Among all compactifications the Bohr compactification
gives the maximal system of measurable sets. Theorem 1 shows that compact-
ifications, measures and measurability fit together in a natural way. All these
ideas are carried out in section 2.

In section 3 the concept is compared with other approaches.
In Theorem 2 we show that in the case that R is the ring of integers each set

which is measurable in the sense of compactifications has a density equal to its
measure. The converse is not true as Theorem 3 implies. There are sets having
a density which are not measurable.

Theorems 4, 5 and 6 are devoted to the equivalence of the approaches via
ideal measures and via compactifications for rings with unity. We conclude sec-
tion 3 with some examples, especially with a detailed investigation of completion
of a ring with unity with respect to a natural metric. This is closely connected
with questions concerning uniformly distributed sequences in such rings. In the
final section 4 the ideal measures of special sets are computed. This includes
the result that the range of a polynomial of degree at least 2 on an algebraic
ring of integers has measure 0.

Our results are related to invariant means on topological groups. A deeper
understanding of the connection of both approaches should be the aim of inves-
tigations in the future.

As a general agreement we suppose all topological spaces to satisfy the Haus-
dorff separation axiom.

2 Compactifications and measures

2.1 Several notions and facts on compactifications

In the following we present a brief outline on compactifications of topological
groups. (Generalizations to more general algebraic structures are possible.) For
a more detailed description of the constructions see for instance [D-Pr-S], page
71. Note the analogies with arbitrary compactifications of completely regular
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topological spaces, especially with the Stone-Čech compactification which is the
maximal one.

Let G be any topological group. A pair (C, ι) is called compactification of
G if ι : G→ C is a continuous homomorphism, C is a compact group and ι(G)
is dense in C. (In general topology one often requires that ι is a homeomorphic
imbedding.) The compactification is called injective if ι is injective. If one
likes, one can force injectivity by considering G/ ker ι instead of G. (C1, ι1)
is called smaller than (C2, ι2) (we write (C1, ι1) ≤ (C2, ι2) via ϕ) if there is
a continuous epimorphism ϕ : C2 → C1 such that ϕι2 = ι1. The relation ≤
is reflexive and transitive. Hence there is a natural notion of equivalence of
compactifications: (C1, ι1) and (C2, ι2) are called equivalent if there exist ϕ and
ψ such that (C1, ι1) ≤ (C2, ι2) via ϕ and (C2, ι2) ≤ (C1, ι1) via ψ. In this case
ψ = ϕ−1. (Obviously this could also be expressed in terms of categories.)

By standard cardinality arguments on appropriate systems of filters on G
the equivalence classes of compactifications of G can be represented by a set.
Hence we are allowed to fix a set C which contains exactly one representative of
each equivalence class of compactifications of G. Any compactification may be
identified with its equivalent copy in C.

The relation ≤ is a partial order on C. But far more is true: If (Ci, ιi),
i ∈ I, is any family of compactifications we may consider the direct product.
Let P =

∏
i∈I Ci and let the continuous homomorphism ι : G → P defined by

g 7→ (ιi(g))i∈I . If C is the closure of ι(G) in the compact group P then (C, ι)
turns out to be the least common upper bound of all (Ci, ιi). Note that the
trivial compactification onto the one element group is the least upper bound
of the empty set. Thus (C,≤) in fact is a complete lattice. (Since we do not
need this fact in full generality we do without the somewhat tedious proof.) In
particular there is a maximal compactification, called the Bohr compactification
(bG,bι). It follows from Pontrjagin’s duality that, if G is a discrete abelian
or, more general, a locally compact abelian group, the Bohr compactification is

injective and can be obtained by taking the dual
̂̂
Gd of the discretely topologized

dual Ĝd of G.
For us there is a second compactification of special interest. If one considers

compactifications (C, ι) of the additive group (R,+) of a ring it might be conve-
nient to extend the ring multiplication from R to C in a continuous way. If this
is possible the continuation of ring multiplication (as addition) is, by density,
uniquely determined by ι. We then call (C, ι) a ring compactification. The
maximal ring compactification - we denote it by rbR - may happen to be not
injective as the extreme example of an infinite field F shows where rbF = {0}.
This follows from the fact that finite fields are the only compact topological
rings that are fields, because compact rings with identity have an ideal topol-
ogy, cf. [Wr] 32.3 and 32.5. This means that there is a neighbourhood base for
0 ∈ R consisting of clopen (= closed and open) ideals.
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2.2 Compactifications and finitely additive measures

On every compact group C there is a unique regular probability measure µC

which is a complete Borel measure and which is left and right invariant. µC is
called the Haar measure. In our context this gives rise to the following notions:

Let G be any topological group and (C, ι) a compactification of G. Then we
call a subset T ⊆ G measurable with respect to (C, ι) if it is the preimage under
ι of a µC-continuity set M , i.e. T = ι−1(M) with µC(M ∩(C \M)) = 0. Thus a
set M ⊆ C is a µC-continuity set if and only if its topological boundary ∂M is a
zero set. It is easy to check that the systems SC of all µC-continuity sets in C and
the system S(C,ι) of their preimages T ⊆ G – which we call the sets measurable
with respect to (for short w.r.t.) (C, ι) – form a set algebra (not necessarily a
σ-algebra) on C resp. on G. Obviously every T ∈ S(C,ι) satisfies T = ι−1(ι(T )).

Note that T ∈ S(C,ι) implies that ι(T ) ∈ SC but that the converse is not true.
(Consider for instance the compact group G = C = R/Z, ι the identity and T
a dense set which is not a continuity set.) Considering the open kernels of ι(T )
and of its complement which, together, form the complement of its boundary,
we observe for T = ι−1(ι(T )): T ∈ S(C,ι) if and only if there are disjoint open
sets O1, O2 ⊆ C with ι(T )∩O2 = ∅, ι(G\T )∩O1 = ∅ and µC(O1)+µC(O2) = 1.
The definition µ(C,ι)(T ) = µC(ι(T )) or, equivalently, µ(C,ι)(ι

−1(M)) = µC(M),
transfers the measure µC on SC to the system S(C,ι), thus defines the natural
finitely additive measure on G w.r.t. (C, ι), defined for all T ∈ S(C,ι). A similar
situation is investigated in the papers of Paštéka.

If the compactification is not injective then the measure µ(C,ι) is in general
not complete. Nevertheless, if µC is complete, the following similar statement
holds: If the family Ti ∈ S(C,ι), i ∈ I, satisfies infi∈I µ(C,ι)(Ti) = 0, then every
T with T = ι−1(ι(T )) which is contained in the intersection of the Ti is in S(C,ι)

and has measure 0. To see this, take closed sets Mi ∈ SC whose preimages are
the Ti. The intersection of the Mi is a closed set M of measure 0 which contains
ι(T ). Thus ι(T ) ∈ SC , since µC is complete, implying T = ι−1(ι(M)) ∈ S(C,ι)

with measure 0.
The maximal compactification (Bohr compactification) (C, ι) = (bG,bι) of

G will play a special role. Hence we write µG for µ(C,ι).

2.3 Compatibility of compactifications and measures

As expected, the measure µ(C,ι)(T ) of a set T ⊆ G does not depend on the
compactification (C, ι) in the following sense:

Theorem 1 Let (C1, ι1) and (C2, ι2) be compactifications of G. On the inter-
section S(C1,ι1) ∩S(C2,ι2) the measures µ1 = µ(C1,ι1) and µ2 = µ(C2,ι2) coincide.
(C1, ι1) ≤ (C2, ι2) via ϕ implies S(C1,ι1) ⊆ S(C2,ι2). In this case, M ∈ SC1

implies ϕ−1(M) ∈ SC2
.
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Proof: We proceed in several steps. Under the additional assumption (C1, ι1) ≤
(C2, ι2) via ϕ we prove the following facts.

1. ϕ−1(M) ⊆ ϕ−1(M) for every M ⊆ C1: Continuity of ϕ.
2. ∂(ϕ−1(M)) ⊆ ϕ−1(∂(M)) for all M ⊆ C1: Using the first fact we observe

∂(ϕ−1(M)) = ϕ−1(M) ∩ C2 \ ϕ−1(M) ⊆ ϕ−1(M) ∩ ϕ−1(C1 \M) =

= ϕ−1(M ∩ C1 \M) = ϕ−1(∂M).

3. µC2
(ϕ−1(M)) = µC1

(M) for every measurable set M ⊆ C1: The left
hand side of the equality defines a translation invariant probability measure on
the Borel sets of C1, hence has to coincide with the unique Haar measure µC1

.
4. M ∈ SC1

implies ϕ−1(M) ∈ SC2
: The assumption means µ1(∂(M)) = 0,

hence by 2. and 3.

µC2
(∂(ϕ−1(M)) ≤ µC2

(ϕ−1(∂(M))) = µC1
(∂(M)) = 0.

5. SC1,ι1 ⊆ SC2,ι2 : By the criterion in Section 2.2 T ∈ S(C1,ι1) implies that
there are disjoint open sets O1, O2 ⊆ C1 with ι1(T ) ∩O2 = ∅ = ι1(G \ T ) ∩O1

and µC1
(O1) + µC1

(O2) = 1. Using 4. we get that O′
i := ϕ−1(Oi), i = 1, 2,

play the same role in C2. ker ι2 ⊆ kerϕι2 = ker ι1 and ι−1
1 ι1(T ) = T implies

ι−1
2 ι2(T ) = T Thus, again by the same criterion, we conclude T ∈ S(C2,ι2).

6. T ∈ S(C1,ι1) implies µ1(T ) = µ2(T ): By 5. T ∈ S(C2,ι2). Hence for both
values i = 1, 2 we have the relation

µCi
(ιi(T )) + µCi

(ιi(G \ T )) = 1.

Using 1. we get

ι2(T ) ⊆ ϕ−1ϕι2(T ) ⊆ ϕ−1(ϕι2(T )) = ϕ−1(ι1(T )),

hence by 3. µC2
(ι2(T )) ≤ µC1

(ι1(T )). The same holds for G \ T instead of T
which, together with the above relations, is possible only if µ1(T ) = µ2(T ).

We have proved everything for the case (C1, ι1) ≤ (C2, ι2). The general case
follows since two compactifications have a common upper bound, for instance
(bG,bιG) with measure µG:

µ1(T ) = µG(T ) = µ2(T ) q.e.d.

Theorem 1 has the following consequence for further investigations. If a set
T ⊆ G is measurable w.r.t. any compactification (C, ι) then it is measurable
w.r.t. all bigger compactifications. The value µ(C,ι)(M) does not dependent
on the compactification as long as T is measurable w.r.t. it. Thus the Bohr
compactification and the corresponding finitely additive probability measure
µG = µ(bG,bι) tells us everything about measures of sets T ⊆ G. Let us call

µG the Hartman measure on G, cf. [Ha], and the corresponding measurable
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sets T ⊆ G group measurable or Hartman measurable. If we replace the Bohr
compactification by the ring Bohr compactification we call the measurable sets
ring measurable.

We are interested in measurability properties of subsets T ⊆ G. The concepts
are nontrivial since it is possible to construct sets T ⊆ G which are not Hartman
measurable, which follows from Theorem 3. Furthermore there are Hartman
measurable sets that are not ring measurable. Consider for instance a ring which
is an infinite discrete field. In this case Bohr and ring Bohr compactification
are not equivalent in an extreme way.

3 Comparing several concepts

3.1 Sets of integers: Hartman measurability and density

In the special case R = Z one has a further nontrivial and natural finitely
additive measure, the density. For a set T ⊆ Z of integers consider, for any finite
set S ⊆ Z, the number A(T, S) = #T∩S

#S . If, for the sets SN = {n ∈ N | n ≤ N}

and −SN = {−n | n ∈ SN}, both sequences A(T, SN ) and A(T,−SN ) tend, for
N → ∞, to the same limit, we denote this common limit by dens(T ) and call it
the density of T .

It turns out that every Hartman measurable set has a density coinciding with
its Hartman measure. The converse is not true, since the density of Hartman
measurable sets is even uniform in the following sense:

Let T ⊆ Z be a set of integers. We say that T has the (unique) uniform
density dens(T ) if the following holds: For every ε > 0 there is a positive integer
Nε such that every set Ik1,k2

= {n ∈ Z | k1 < n ≤ k2} with k2 − k1 ≥ Nε fulfills

dens(T ) − ε ≤ A(T, Ik1,k2
) ≤ dens(T ) + ε.

Of course if the uniform density exists then also the density of T exists and both
values are equal.

Theorem 2 Every Hartman measurable set T ⊆ Z of integers has a uniform
density dens(T ) with dens(T ) = µG(T ).

Proof: We consider the Bohr compactification (C, ι) = (bZ,bι) which can be
realized by

ι(k) = (kα)α∈R/Z ∈ C ⊆
∏

α∈R/Z

(χα(Z), χα).

Here every character χα : G → R/Z, k 7→ kα, of the integers represents a
compactification. A topological base B is given by all sets B ⊆ C of the type

B = B(α1, . . . , αk, I1, . . . , Ik) = {(xα)α∈R/Z ∈ C | xαj
∈ Ij , j = 1, . . . , k},
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where k ∈ N, αj ∈ R/Z, and the Ij are connected open subsets (intervals)
in R/Z. Note that all these base sets are µ-continuity sets where µ is the
Haar measure on C. The same is true if we consider the base sets of a smaller
compactification (instead of (C, ι)) where not all α ∈ R/Z occur.

If T ∈ S = S(C,ι) then µ(∂M) = 0 where M = ι(T ). Given any ε > 0 the
outer regularity of µ gives an open set V ⊇ ∂M with µ(V ) < ε/2. For each
x ∈ ∂(M) take an open neighbourhood Bx ⊆ V which is a base set Bx ∈ B.
Use compactness to get a finite subcovering of ∂M by open base sets Bi, i.e.

∂M ⊆
n1⋃

i=1

= U ⊆ V.

U is an open µ-continuity set. M0 = M \ U is compact and, similarly, can be
covered by a finite union of base sets in such a way that

M0 =

n2⋃

i=n1+1

Bi ⊆M ∪ U.

Thus we have M0 ⊆ M ⊆ M1 = M0 ∪ U with µ-continuity sets Mi which are
finite unions of base sets Bi.

The definition of the involved sets uses only finitely many Bi, each of them
involving only finitely many αj , j = 1, . . . , s. Thus we may consider the projec-

tion π : C → Cε = π(C), ιε = πι, onto the occuring components corresponding
to αj , j = 1, . . . , s. Hence (Cε, ιε) is a finite dimensional compactification of Z,
generated by the characters χαj

, j = 1, . . . , s. This means that Cε ⊆ (R/Z)s is
(in the topological sense) generated by the element α = (α1, . . . , αs) ∈ Cε. Write
A′ = π(A) for arbitrary A ⊆ C. Since all Bi depend only on the components cor-
responding to the αj , j = 1, . . . , s, we have π−1(B′

i) = Bi for i = 1, . . . , n1 +n2.
This implies π−1(U ′) = U and π−1(M ′

i) = Mi for i = 0, 1. With Ti = ι−1(Mi)
we conclude

µG(T0) = µCε
(M ′

0) ≤ µG(T ) ≤ µG(T1) = µCε
(M ′

1).

It is known from the theory of uniform distribution on monothetic groups
(cf. [K-N], p. 269, Corollary 4.1) that the sequence (kα) is well distributed in Cε

for every generating element α. In our case this means that there is a positive
integer Nε such that for all k ∈ Z and all N ≥ Nε we have

µCε
(M ′

i) − ε/2 <
1

N
#{n ∈ Z | k < n ≤ k +N,nα ∈M ′

i} < µCε
(M ′

i) + ε/2

for i = 0, 1. Furthermore we have

µCε
(M ′

1) ≤ µCε
(M ′

0) + µCε
(U ′) < µCε

(M ′
0) +

ε

2
.
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Thus we get for every I = Ik1,k2
with k2 − k1 ≥ Nε

#I ∩ T

#I
≤

#I ∩ T1

#I
< µCε

(T1) +
ε

2
< µCε

(M ′
0) + ε < µG(T ) + ε,

and similarly #I∩T
#I ≥ µG(T ) − ε, proving the theorem. q.e.d.

As a corollary we get that sets with density are not necessarily measurable.

Theorem 3 There are sets of integers which have a density but are not Hart-
man measurable.

Proof: Since the density of a Hartman measurable set is uniform by Theorem
2, it suffices to construct a set T which has a density but not a uniform density.
Take Tk = {k2, k2 + 1, . . . , k2 + k}, T+ =

⋃
k∈N

Tk, T− = {−n | n ∈ T+} and
T = T+ ∪ T− then it is easy to check that T has the density dens(T ) = 1/2
which is not uniform. q.e.d.

3.2 Compactifications and families of ideals with finite in-

dex

In this subsection we show that the approach via ring compactifications is equiv-
alent to that via ideals of finite index.

For an arbitrary topological ring R with identity let J = {Ij | j ∈ J} be
a family of clopen ideals Ij � R of finite index #R/Ij and suppose that J is
closed under intersections. It is known (cf. for instance [P1], [P5]) that J , if it
is closed under finite intersections, defines a finitely additive measure µJ on R
in the following way:

For every subset T ⊆ R which is a finite union T =
⋃n

i=1 ri + Iji
with

pairwise disjoint ri + Iji
the number µJ (T ) =

∑n
i=1 #R/Iji

is independent of
the representation of T . Let us call such sets J -definable. The set function µJ

is a finitely additive measure µJ on the set algebra of J -definable sets. µJ can
be uniquely extended to the so-called ideal measure (induced by J ) on the set
algebra of all subsets T ⊆ R which can be approximated in the following sense:

T is called measurable w.r.t. J if there is a (unique) number µJ (T ) such
that for each ε > 0 there are J -definable sets Aε, Bε ⊆ R with Aε ⊆ T ⊆ Bε

and
µJ (T ) − ε < µJ (Aε) ≤ µJ (Bε) < µJ (T ) + ε.

We show that this approach essentially leads to the same concepts as the com-
pactification (CJ , ιJ ) defined by

ιJ : R→
∏

j∈J

R/Ij , r 7→ (r + Ij)j∈J .

For notational convenience call J point separating if
⋂

j∈J Ij = {0}. Note that

this is the case if and only if ιJ is injective if and only if T = ι−1
J
ιJ (T ) for all

T ⊆ R.
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Theorem 4 Suppose T ⊆ R. If T ∈ S(CJ ,ιJ ) then it is measurable w.r.t. J .

The converse holds if T = ι−1
J
ιJ (T ) = T . If both values µJ (T ) and µ(CJ ,ιJ )(T )

are defined they coincide. Hence µJ = µ(CJ ,ιJ ) if J is point separating.

Proof: First note that the J -definable sets T ⊆ R correspond to clopen sets
MT = ιJ (T ) which form a topological base of CJ . A set is clopen if and only
if it has empty topological border. Hence all these sets are measurable w.r.t. J
as well as w.r.t. the compactification (CJ , ιJ ). By translation invariance of the
Haar measure it is obvious that µJ (T ) = µ(CJ ,ιJ )(T ) for such sets.

Assume now that T is measurable w.r.t. the compactification (CJ , ιJ ), then
µCJ

(∂MT ) = 0. By regularity of the Haar measure and a compactness argument
as in the proof of Theorem 2 ∂MT can be covered by a finite union U of clopen
base sets which has arbitrary small measure. Again as in the proof of Theorem
2 U is defined by only finitely many components, i.e. ideals, hence it induces
clopen base sets M0 ⊆ MT ⊆ M1 approximating M . By construction the
preimages Ti = ι−1

J
(Mi) are J -definable sets approximating T in the sense of

the definition. This, together with the remark above, shows that the values of
both measures coincide.

It remains to prove that every T with T = ι−1
J
ιJ (T ) = T which is measurable

w.r.t. J is in S(CJ ,ιJ ). Put M = ιJ (T ). For each ε > 0, there are J -definable
sets Aε and Bε with Aε ⊆ T ⊆ Bε and µJ (Bε \ Aε) < ε. Note that ∂M ⊆
MBε

\MAε
. Furthermore their Haar measure equals to the ideal measure. It

follows immediately that µC1
(∂M) = 0. Thus T = ι−1

J
ιJ (T ) = T is measurable

with respect to (CJ , ιJ ).
On the other hand, if T is measurable w.r.t. the compactification (CJ , ιJ ),

then µCJ
(∂MT ) = 0. By regularity of the Haar measure and a compactness

argument as in the proof of Theorem 2 ∂MT can be covered by a finite union
U of clopen base sets which has arbitrary small measure. Again as in the proof
of Theorem 2 U is defined by only finitely many components, i.e. ideals, hence
it induces clopen base sets M0 ⊆MT ⊆M1 approximating M . By construction
the preimages Ti = ι−1

J
(Mi) are J -definable sets approximating T in the sense

of the definition. q.e.d.

Remark: For each I � R dI(r1, r2) = 0 if r1 − r2 ∈ I and dI(r1, r2) = 1
otherwise defines a pseudometric dI on R. For given J there corresponds the
system of all dI with I ∈ J . This system is point separating if and only if J is
point separating. The completion with respect to the uniformity of this system
of pseudometrics turns out to be equivalent to (CJ , ιJ ). The construction and
the proof is standard. If J is countable the system of pseudometrics can be
replaced by a metric. This special case is discussed in detail in section 3.3.

It is clear that the class of J -measurable sets increases with J . This is an
immediate consequence of the following theorem together with Theorem 1.

Theorem 5 J1 ⊆ J2 implies (CJ1
, ιJ1

) ≤ (CJ2
, ιJ2

)

9



Proof: As one checks easily, the mapping

ϕ : ιJ2
(R) → ιJ1

(R), (r + I)I∈J2
7→ (r + I)I∈J1

is well defined and can be uniquely extended to a continuous epimorphism
CJ2

→ CJ1
. q.e.d.

Hence it remains to investigate the largest possible choice for J . Let F be
the system of all ideals I � R with finite index. Note that F is closed under
finite intersections (cf. [P1], [P2]). The situation is explained by the following
theorem.

Theorem 6 (CF , ιF ) as a compactification of R (R ring with identity) is equiv-
alent to the ring Bohr compactification (C, ι) = (rbR, rbι).

Proof: Since (CF , ιF ) is a ring compactification there is a continuous epimor-
phism ϕ : C → CF from the maximal ring compactification C onto CF with
ϕι = ιF . Since C is compact, every continuous injection into a Hausdorff space
is a homeomorphism. Thus it suffices to prove kerϕ = {0}.

Let U be any open neighbourhood of 0 ∈ C. It follows from the structure
theory of compact rings with unity (cf. [Wr], Theorem 32.3 and 32.5) that C
has a topological base of clopen ideals which, since C is compact, must have
finite index. Let I � C be such a clopen ideal with I ⊆ U . It follows that
I0 = ι−1(I) � R with |R/I0| = |C/I|. Hence I0 ∈ F and ker ιF ⊆ I0. We
conclude

ι−1(kerϕ) = ker(ιϕ) = ker ιF ⊆ I0

and thus
kerϕ = ιι−1(kerϕ) ⊆ ι(I0) = I ⊆ U.

Since this holds for an arbitrary neighbourhood U of 0 ∈ C and since we have
required the Hausdorff separation axiom we have kerϕ = {0}, proving the
theorem. q.e.d.

Theorem 6 implies that µ(CF ,ιF ) and µ(rbR,rbι) are defined on the the same

set algebra and therefore, by Theorem 1, coincide. We will call this finitely
additive measure the ideal measure on the ring.

3.3 Examples

Let us investigate subsets T ⊆ Z of the integers and their measurability w.r.t.
several compactifications. Take any α ∈ R and consider the compactification
(C,χα) where C ≤ R/Z is the torus group and χα is the unique character with
χα(1) = α+ Z. If α = p

q is rational with integers q > 0 and p relatively prime,
then the measurable sets are exactly the unions of classes w.r.t. the cyclic factor
group Z/(q) modulo q. One gets the concept of uniform distribution modulo q.
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If one looks at the supremum of all (Cα, ια) where α runs through all 1
pn

where p is a prime number one gets the injective p-adic completion of the in-
tegers. All singletons are measurable zero sets. But also all p-powers form a
measurable zero-set w.r.t. this compactification.

If n = 1
α runs through all positive integers one gets the classical concept of

uniform distribution in Z, cf. [Niv]. This compactification coincides with the
ring Bohr compactification and is closely related to the Banach-Buck measure
on the positive integers (cf. [B], [K-N] p. 313-315, [L-N], [Ok], [P1] and [P2]).

In the following we discuss in more detail the situation where R is a ring
with 1 and J : I1 ⊇ I2 ⊇ I3 . . . ⊇ In ⊇ . . . is a sequence of ideals satisfying

∞⋂

n=1

In = {0}.

A metric d(x, y) = ‖x− y‖ can be introduced by the usual norm

‖x‖ =
∞∑

n=1

1 − χIn
(x)

2n
,

where χE denotes the characteristic function of a set E. If J is uncountable one
needs a system of pseudometrics inducing the corresponding uniform structure;
cf. section 3.2.

Obviously d(xn, yn) → 0 if and only if for every N ∈ N there exists an
n0 = n0(N) such that for all n ≥ n0 the relation xn ≡ yn mod IN holds. This
yields that the ring operations are continuous. Denote by (Ω, d) the completion
of the metric space (R, d). (A standard construction as it is carried out in the last
section, paragraph 170, in the second volume of van der Waerden’s book [vdW]
shows that ring operations can uniquely extended to Ω continuously.) Denote
by S the closure of a set S in Ω. Then the following elementary properties can
be established.
(i) For any ideal I in R the closure I is an ideal in Ω.
(ii) x+ In = x+ In for x ∈ R, n = 1, 2, . . ..
(iii) For every α ∈ Ω there exists an x ∈ R such that α+ In = x+ In.
(iv) For all α ∈ Ω, n = 1, 2, . . . the set α+ In is open and closed.
(v) (x+ In) ∩R = x+ In for all x ∈ R, n = 1, 2, . . ..
(vi) S = ∩∞

n=1(S + In) for every S ⊆ Ω.
(vii) The system {x+ In | x ∈ Ω, n = 1, 2, . . .} is a closed open base in Ω.
(viii) Ω is compact if and only if each factor ring R/In is finite.

In the following we suppose that each factor ring is finite, i.e. Ω is compact.
Following the general approach of section 2 we consider the group (Ω,+) with
Haar measure µΩ. Furthermore we define for arbitrary S ⊆ R a set function
µ̄J by µ̄J (S) = µΩ(S). µ̄J is an outer measure and is called covering density
induced by J , and it can easily be seen that for A,B ⊆ R

µ̄J (A ∪B) + µ̄J (A ∩B) ≤ µ̄J (A) + µ̄J (B).

11



It follows from basic measure theory that the system

DJ = {S ⊆ R | µ̄J (S) + µ̄J (R \ S) = 1}

is a set algebra and the restriction of µ̄J on DJ is a finitely additive measure
on DJ . Denoting by [S : In] the number of different residue classes s+ In with
s ∈ S and putting N(In) = #R/In we clearly have

µΩ(α+ In) =
1

N(In)

for α ∈ Ω, n = 1, 2, . . .. Hence for S ⊆ R the covering density of S can be
computed by the limit formula

µ̄J (S) = lim
n→∞

[S : In]

N(In)
.

Remark: Since every class α + In is a µΩ-continuity set the basic notions
of the abstract theory of uniform distribution of sequences can be applied to
our situation, and general results in the flavour of [K-N], chapters 3,4,5 can be
shown. For more recent results concerning distribution problems in rings and
submeasures we refer to [P-T1]. For instance, a sequence (xn) in R is called
J -well distributed if and only if for each ideal In ∈ J and x ∈ R the relation

lim
m→∞

1

m
#{k | h+ 1 ≤ k ≤ h+m, xk ≡ x mod In} =

1

N(In)

holds uniformly in h = 1, 2, . . . (cf. also subsection 3.1). Following the ideas of
[P-T1] we establish

Theorem 7 Let J be an ideal system as above and S ⊆ R with µ̄J (S) = 1.
Then a J -well distributed sequence can be selected from S.

Remark: Specific distribution results on linear recurring sequences in Dedekind
domains are shown in [Ti-Tu1] and [Ti-Tu2].

4 Special sets

In the last section we restrict our investigations to commutative rings with
identity. Assume J1, J2, . . . to be a sequence of coprime ideals and put In =
J1 ∩ . . . ∩ Jn. A set S ⊆ R is called multiplicative if [S : I ∩ J ] = [S : I] · [S : J ]
holds for arbitrary coprime ideals I, J . From the Chinese Remainder Theorem
we have N(In) = N(J1) · . . . ·N(Jn), hence the limit formula in section 3.3 for
the computation of the covering density yields

µJ (S) =
∞∏

n=1

[S : Jn]

N(Jn)

12



for any multiplicative set in R.
As an example of a multiplicative set let us consider a mapping f : R → R

such that for each ideal I we have f(x) ≡ f(y) mod I provided that x ≡ y
mod I. Due to the Chinese Remainder Theorem the mapping f(x) + I ∩ J 7→
(f(x)+ I, f(x)+J) is a bijection between R/(I ∩J) and R/I⊕R/J , and so the
image set f(R) is multiplicative. Therefore the image set of each polynomial in
R[x] is multiplicative. Let Rk denote the set of k-th powers of elements of R.
Then Rk is multiplicative, too.

Let J be a maximal ideal with finite norm N(J). Then the multiplicative
group of the field R/J is cyclic and let g + J be a generator. The elements
xk + J , x /∈ J form a cyclic subgroup generated by gk + J . The order of this

element is N(J)−1
(k,N(J)−1) and we have [Rk : J ] = N(J)−1

(k,N(J)−1) + 1. Thus we have

shown

Theorem 8 Let Jn, n = 1, 2, . . ., be maximal ideals in R (commutative ring
with identity). Then

µJ (Rk) =
∞∏

n=1

(
N(Jn) − 1

(k,N(Jn) − 1)
+ 1

)
·

1

N(Jn)
.

Corollary 1: If (k,N(Jn) − 1) = 1, n = 1, 2, . . ., then µJ (Rk) = 1.
Corollary 2: If (k,N(Jn) − 1) > 1 for infinitely many n, then µJ (Rk) = 0.

Our final result is devoted to the ideal measure of the image set f(R) for
nonlinear polynomials. Note that the ideal measure is defined via all ideals of
finite index as in section 3.2.

Theorem 9 Let R be the ring of algebraic integers in a number field and let
f ∈ R[x] be a non-linear polynomial. Then f(R) is of ideal measure 0.

Proof: Let n = deg f . By a theorem of Niederreiter and Lo [N-L], there
are infinitely many maximal ideals P in R such that f is not a permutation
polynomial mod P i.e., the function induced by f on the (finite) residue field
R/P is not bijective. For each such P of index [R : P ] = q, the value set f(R)
is contained in the union of at most q − q−1

n residue classes of P , by a theorem
of Wan [Wn].

For different maximal ideals P1, . . . , Pk of index [R : Pi] = qi, the ideal
measure of the set of elements of R that are for each i in one of Ni given residue
classes mod Pi is

∏k
i=1

Ni

qi
, by the Chinese Remainder Theorem. Thus, if f is

not a permutation polynomial mod Pi for i = 1, . . . , k then the image of f is
contained in a set of ideal measure at most

k∏

i=1

(
1 −

qi − 1

nqi

)
≤

(
1 −

1

2n

)k

.

This value can be made arbitrarily small by considering an infinite sequence of
different maximal ideals mod which f is not a permutation polynomial. q.e.d.
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[P1] M. Paštéka The measure density on Dedekind domains, Ricerche di
matematica.
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