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INTEGRALLY CLOSED DOMAINS, MINIMAL
POLYNOMIALS, AND NULL IDEALS OF MATRICES

SOPHIE FRISCH

Abstract. We show that every element of the integral closure D′ of a domain

D occurs as a coefficient of the minimal polynomial of a matrix with entries

in D. This answers affirmatively a question of J. Brewer and F. Richman,
namely, if integrally closed domains are characterized by the property that the

minimal polynomial of every square matrix with entries in D is in D[x]. It
follows that a domain D is integrally closed if and only if for every matrix A

with entries in D the null ideal of A, ND(A) = {f ∈ D[x] | f(A) = 0} is a

principal ideal of D[x].

For a square matrix A with entries in a domain D, the null ideal of A in D[x]
is ND(A) = {f ∈ D[x] | f(A) = 0}. For integrally closed D, W.C. Brown [3] has
shown that this ideal is always principal. Conversely, if D is a domain for which
all null ideals of matrices are principal, then D is integrally closed. We will show
this by demonstrating that every element of the integral closure D′ of a domain
D occurs as a coefficient of a minimal polynomial of a matrix with entries in D.
This also answers a question of Brewer and Richman [2], namely, if integrally closed
domains are characterized by the fact that the minimal polynomial of every square
matrix with entries in D is in D[x]. To put this question in context, we remind the
reader of a related, but a priori stronger, property characterizing integrally closed
commutative rings:

Fact. Let R be a commutative ring and T its total ring of quotients. Then R is
integrally closed in T if and only if it has the following property:

whenever f , g, and h are monic polynomials in T [x] with f(x) = g(x)h(x) then
f ∈ R[x] implies g ∈ R[x] and h ∈ R[x].

Proof. (⇐) Suppose R has the property and u ∈ T is integral over R. Let f ∈ R[x]
be a monic polynomial with f(u) = 0 then f(x) = g(x)(x − u) for some monic
g ∈ T [x], therefore (x− u) ∈ R[x] and u ∈ R.

(⇒) This is shown in Bourbaki [1, Chpt 5, §1.3, Prop. 11] by means of the
splitting ring of g and h. If R is a domain, this direction also follows from the fact
that R is an intersection of valuation rings contained in T and in each valuation
ring we have Gauß’s Lemma C(f) = C(g) C(h). �

If D is an integrally closed domain, then the above fact guarantees that the
minimal polynomial of every matrix with entries in D is in D[x], since after all the
minimal polynomial is a monic factor of the characteristic polynomial.
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Theorem. Let D be a domain and D′ its integral closure. Then every element of
D′ occurs as a coefficient of a minimal polynomial of a matrix with entries in D.

Proof. Let K be the quotient field of D and u ∈ K integral over D. We use
the expression “second-highest coefficient” to designate the coefficient of xn−1 in a
polynomial of degree n > 0.

Let f1(x) be a monic polynomial in D[x] with f1(u) = 0, deg f1 ≥ 3 and second-
highest coefficient zero. (Given any monic f ∈ D[x] with f(u) = 0, we can set
f1(x) = f(x)(x2 − cx), where c is the second-highest coefficient of f .)

We write u as a fraction u = a/b with a, b ∈ D and set f2(x) = f1(x) + (bx− a).
Then f2(x) is another monic polynomial in D[x] with deg f2 ≥ 3, second-highest
coefficient zero and f2(u) = 0.

In K[x], f1(x) = g(x)(x−u) for some monic polynomial g ∈ K[x] with deg g ≥ 2,
and f2(x) = (g(x)+b)(x−u). Note that the second-highest coefficient in both g(x)
and g(x) + b is u.

Now let Ai be the companion matrix of fi for i = 1, 2 and A the block-diagonal
matrix with A1 and A2 on the main diagonal. Then the minimal polynomial h(x)
of A is the least common multiple of f1 and f2 in K[x]. Since g(x) and g(x)+ b are
relatively prime, the minimal polynomial of A is

h(x) = g(x)
(
g(x) + b

) (
x− u

)
.

We have arranged things so that the three monic factors g(x), g(x)+b and (x−u)
of h(x) have second-highest coefficients u, u, and −u, respectively. Therefore the
second-highest coefficient of h(x) is u. �

Corollary. Let D be a domain. D is integrally closed if and only if the minimal
polynomial of every square matrix with entries in D is in D[x].

If D is a domain with quotient field K and A a square matrix with entries in D,
then the following conditions are easily seen to be equivalent (cf. [3]):
i) the minimal polynomial of A, mA(x) ∈ K[x], is in D[x].
ii) the null ideal of A in D[x], ND(A) = {f ∈ D[x] | f(A) = 0}, is principal.

(To see (ii ⇒ i): if ND(A) is principal, it must have a monic generator, since
it contains the characteristic polynomial of A, which is monic.) This yields the
following variant of our characterization of integral domains:

Variant of Corollary. Let D be a domain. D is integrally closed if and only if
for every square matrix A with entries in D, the null ideal of A in D[x],

ND(A) = {f ∈ D[x] | f(A) = 0}

is a principal ideal.
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