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Abstract. 1 Let D be a Dedekind domain with finite residue fields and
F a finite set of maximal ideals of D. Let r0, . . ., rn be distinct elements
of D, pairwise incongruent modulo P kP for each P ∈ F , and s0, . . ., sn
arbitrary elements of D.
We show that there is an interpolating P kP -congruence preserving integer-
valued polynomial, that is, f ∈ Int(D) = {g ∈ K[x] | g(D) ⊆ D} with
f(ri) = si for 0 ≤ i ≤ n, such that, moreover, the function f : D → D is
constant modulo P kP on each residue class of P kP for all P ∈ F .
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1 Introduction

Let D be a Dedekind domain with finite residue fields, K its quotient field, and

Int(D) = {f ∈ K[x] | f(D) ⊆ D}

the ring of integer-valued polynomials on D.
We will show that two different feats that can each be accomplished separately

by integer-valued polynomials, namely, interpolation of arbitrary functions on D,
and, representation of arbitrary functions on D/Pn, where Pn is a power of a
maximal ideal P , can actually be accomplished by one and the same polynomial,
simultaneously.

We recall some well-known facts. First, about interpolation by integer-valued
polynomials: Newton already used polynomials in Int(ZZ) to interpolate functions
on ZZ, cf. [1]. More generally, when D is a Dedekind domain with finite residue
fields, then, given r0, . . ., rn ∈ D (distinct) and arbitrary s0, . . ., sn ∈ D, we can
find f ∈ Int(D) with f(ri) = si for 0 ≤ i ≤ n [3]. If this holds for a domain D, we

1 This research was supported by the Austrian Science Fund FWF grant P30934-N35.



2 S. Frisch

say that D has the interpolation property. The domains having the interpolation
property have been characterized among Noetherian domains and among Prüfer
domains [2], and include, as mentioned, all Dedekind domain with finite residue
fields.

It turned out that the interpolation property is relevant to the question
whether Int(D) is a Prüfer domain. If D is Prüfer (a necessary condition for Int(D)
to be Prüfer) then Int(D) is Prüfer if and only if Int(D) has the interpolation
property [2].

Second, about the representation of functions on D/I, where I is an ideal of
D: Let f ∈ Int(D). We say that f is I-congruence preserving, if, for all a, b ∈ D,

a ≡ b mod I =⇒ f(a) ≡ f(b) mod I.

In that case, f induces a well-defined function on D/I by f(a+I) = f(a)+I. Let
D be a Dedekind domain with finite residue fields. If I is a power of a maximal
ideal of D (and only if I is a power of a maximal ideal), every function on D/I
arises from an I-congruence preserving polynomial in Int(D) in this way. This
was shown for D = ZZ by Skolem [7] (in the “if” direction) and Rédei and Szele
[5,6] (in the “only if” direction), and later generalized to Dedekind domains [4].

If D is a Dedekind domain with finite residue fields, we will show that, given
r0, . . ., rn ∈ D (distinct) and arbitrary s0, . . ., sn ∈ D, and a finite set of powers
P kP of maximal ideals such that the ri are pairwise incongruent modulo each
P kP , we can find a polynomial f ∈ Int(D) with f(ri) = si for 0 ≤ i ≤ n and
such that

a ≡ b mod P kP =⇒ f(a) ≡ f(b) mod P kP .

for each P kP , cf. Thm. 1.
A note on terminology: if R is any ring and f ∈ R[x] a polynomial, f =∑

k ckx
k induces a function by substitution of elements of R for the variable:

r 7→
∑

k ckr
k . A function ϕ : R→ R thus arising from a polynomial f ∈ R[x] is

called a polynomial function on R.
When R is an infinite domain, then the polynomial f inducing a polynomial

function is uniquely determined by its values on an infinite subset of R. Relying
on this one-to-one correspondence between polynomials and polynomial functions,
in the case where R = K is an infinite field, we will not be as pedantic about the
distinction between polynomials and polynomial functions as would be necessary
if we were dealing with finite rings or rings with zero-divisors.

In what follows, when we talk about the function associated to an integer-
valued polynomial f ∈ Int(D), we always mean the function f : D → D (as
opposed to f : K → K).

2 Notation and Definitions

We let IN denote the positive integers (natural numbers) and IN0 the non-negative
integers. We use “additive” terminology for Lipschitz functions:
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Definition 1. Let R be a commutative ring, f : R → R a function, I an ideal
of R, and n ∈ IN0. We say that f is I-adically n-Lipschitz if, for all m ∈ IN and
all a, b ∈ R

a ≡ b mod Im+n =⇒ f(a) ≡ f(b) mod Im

When D is a domain, g ∈ Int(D), and I an ideal of D, we will say that
g is I-adically n-Lipschitz if the associated function g : D → D is I-adically
n-Lipschitz.

We summarize some elementary consequences of this definition.

Remark 1. Let R be a commutative ring, f : R→ R a function, and I an ideal
of R.

1. I-adically n-Lipschitz implies I-adically N -Lipschitz for all N ≥ n.

2. If f : R→ R is a function induced by a polynomial in R[x] by substitution
of the variable, then f is I-adically 0-Lipschitz for all ideals I of R.

3. For fixed I and n, the set of I-adically n-Lipschitz functions on R is closed
under addition, subtraction and multiplication and, therefore, forms a subring
of the set of all functions RR.

4. If D is a domain, I an ideal of D and n ∈ IN0, then the set of g ∈ Int(D)
that are I-adically n-Lipschitz is a subring of Int(D).

In what follows, D is always a Dedekind domain with quotient field K, and
we always assume D 6= K. For such a Dedekind domain, we denote by Spec1(D)
the set prime ideals of height one, which coincides with the set of maximal ideals
of D. For P ∈ Spec1(D), we use vP to denote the normalized discrete valuation
on K associated with P ; that is, for d ∈ D \ {0}, vP (d) is the maximal exponent
v such that d ∈ P v, and, for an element of K \ {0} expressed as a fraction a/b
with a, b ∈ D \ {0}, vP (a/b) = vP (a)− vP (b).

Remark 2. Let D a Dedekind domain, f ∈ Int(D), and P a maximal ideal of D.
If we express f as a fraction f = g/d with g ∈ D[x] and d ∈ D \ {0}, we see that
f is P -adically vP (d)-Lipschitz. In particular, if f ∈ DP [x], then f is P -adically
0-Lipschitz. More generally, if f ∈ Int(D) is expressed as a fraction f = g/d with
g ∈ DP [x] and d ∈ D \ {0}, then, also, f is P -adically vP (d)-Lipschitz.

Note that vP (d), in the above remark, is not necessarily the minimal n for
which f is P -adically n-Lipschitz (not even if d is relatively prime to the content
of g). For instance, when f is a product f = f1 . . . fn with fi = gi/d, gi ∈ D[x],
then the denominator of f is dn, but f is P -adically vP (d)-Lipschitz, not just
vP (dn)-Lipschitz, by Remark 1 (3).

We use ||I|| for the norm of an ideal I of D, that is ||I|| = |D/I|.
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3 P -adic Lipschitz constants of interpolating
integer-valued polynomials

We recall a Lemma from an earlier paper that we will need for the proof of
Lemma 2.

Lemma 1 ([3][Lemma 6.1]). Let v be a discrete valuation on a field K and
Rv its valuation ring. Suppose g =

∑n
k=0 dkx

k in K[x] splits over K as

g(x) = dn(x− b1) . . . (x− bm)(x− c1) . . . (x− cl),

where v(bi) < 0 and v(ci) ≥ 0.
Let µ = min0≤k≤n v(dk) and set g+(x) = (x − c1) . . . (x − cl) then, for all

r ∈ Rv,

v
(
g(r)

)
= µ+ v

(
g+(r)

)
.

Definition 2. For q,m integers with q > 1 and m ≥ 0 define

L(q,m) :=
1− qm

1− q

Lemma 2. Let D be a Dedekind domain with finite residue fields and a0, a1
distinct elements of D. For P ∈ Spec1(D), let mP = vP (a1 − a0).

For any finite set F of maximal ideals of D there exists f ∈ Int(D) with
f(a1) = 0 and f(a0) = 1, and such that f is P -adically L(||P || ,mP )-Lipschitz for
all P ∈ F .

Proof. By linear substitution we may assume, w.l.o.g., that a0 = 0. Also, we
assume w.l.o.g. that F contains the set

P = {P ∈ Spec1(D) | a1 ∈ P} = {P ∈ Spec1(D) | mP > 0}.

The case P = ∅ is trivial. Assume P 6= ∅. We set F0 = {P ∈ F | mP = 0}; such
that F is the disjoint union of P and F0.

We will construct a polynomial g ∈ K[x] with g(a1) = 0, such that for every
essential valuation v of D and every r ∈ D, v

(
g(r)

)
≥ v

(
g(0)

)
; and then set

f(x) = g(x)/g(0).
Let N = maxP∈P ||P ||mP . Using the Chinese Remainder Theorem modulo

PmP+1 for P ∈ F , we produce a sequence (bi)
N
i=1 in D with the properties:

1. b1 = a1
2. For all P ∈ F , the bi with 1 ≤ i ≤ ||P ||mP form a complete system of residues

modulo PmP .
3. For all P ∈ F , for all i > ||P ||mP , bi ≡ 1 modulo PmP+1.

Note that no bi is in PmP+1 for any P ∈ F , and, in particular, that no bi is
in P for any P ∈ F0.
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Let P ∈ P and 1 ≤ k ≤ mP . For any given r ∈ D, the number of bi with
1 ≤ i ≤ ||P ||mP in the residue class r + P k is the same, namely,

γk(P ) := ||P ||mP−k .

Note that, therefore, for all P ∈ P and 1 ≤ k ≤ mP ,

∀r ∈ D
∣∣{i | vP (r − bi) ≥ k}

∣∣ ≥ γk(P ),

with equality holding for all r ∈ D \ (1 + P ) (and, actually, for all r ∈ D in the
case where ||P ||mP = N).

Let Q = {Q ∈ Spec1(D) \P | ∃i bi ∈ Q} and for Q ∈ Q let kQ = maxi vQ(bi).
Note that Q∩ F = ∅.

Let c ∈ D with vQ(c) = kQ + 1 for all Q ∈ Q, and c ≡ 1 mod PmP+1 for all
P ∈ F . Let Q′ = {Q ∈ Spec1(D) | vQ(c) > 0}. Then Q ⊆ Q′ and Q′ ∩ F = ∅.

Let c1 = a1 and for 1 < i ≤ N let ci = c−1bi. Then, for every P ∈
Spec1(D) \ Q′, and, in particular, for every P ∈ F , (ci)

N
i=1 is a sequence in

DP . Also, for every maximal ideal Q of D that is neither in Q′ nor in P,
vP (ci) = 0 for all i.

We set

g(x) =

N∏
i=1

(x− ci) = (x− a1)

N∏
i=2

(x− c−1bi)

and show that for all essential valuations v of D and all r ∈ D, v(g(r)) ≥ v(g(0)).
First, assume P ∈ P. The sequence (ci)

N
i=1 enjoys the same properties with

respect to PDP that the sequence (bi)
N
i=1 enjoys with respect to P , namely, those

ci with 1 ≤ i ≤ ||P ||mP form a complete system of residues modulo (PDP )mP

and ci ≡ 1 modulo (PDP )mP+1 for all i > ||P ||mP . Also, no ci is in PmP+1.
Consequently, for all r ∈ D, and 1 ≤ k ≤ mP∣∣{i | vP (r − ci) ≥ k}

∣∣ =
∣∣{i | vP (r − bi) ≥ k}

∣∣ ≥ γk(P ).

Let γP :=
∑mP

k=1 γk(P ). Then

vP

(
g(r)

)
=

N∑
i=1

vP (r − ci) =

∞∑
k=1

∣∣{i | vP (r − ci) ≥ k}
∣∣ ≥

≥
mP∑
k=1

∣∣{i | vP (r − ci) ≥ k}
∣∣ =

mP∑
k=1

∣∣{i | vP (r − bi) ≥ k}
∣∣ ≥ γP ,

while vP (g(0)) =

=

∞∑
k=1

∣∣{i | vP (ci) ≥ k}
∣∣ =

mP∑
k=1

∣∣{i | vP (ci) ≥ k}
∣∣ =

mP∑
k=1

∣∣{i | vP (bi) ≥ k}
∣∣ = γP .

Now consider Q ∈ Q′. Here vQ(c1) = vQ(a1) = 0 and, for all i > 1, vQ(ci) < 0.
Let dk be the coefficient of xk in g and µ = mink vQ(dk). Using Lemma 1, we see
that for all r ∈ D,

vQ

(
g(r)

)
= µ+ vQ(r − a1) ≥ µ = µ+ vQ(a1) = vQ

(
g(0)

)
.
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For the remaining essential valuations v of D, v(ci) = 0 for all i, and, therefore,
for all r ∈ D, v

(
g(r)

)
=
∑

i v(r − ci) ≥ 0 =
∑

i v(ci) = v
(
g(0)

)
.

Now let f(x) = g(x)/g(0). Then f(a1) = 0, and f(0) = 1. Also, f ∈ Int(D),
because for all r ∈ D and every essential valuation v of D, v

(
g(r)

)
≥ v

(
g(0)

)
and therefore v

(
f(r)

)
≥ 0.

As for the Lipschitz properties: for those P ∈ Spec1(D) for which vP (c) = 0,
and, in particular, for all P ∈ F , g is in DP [x]. f is, therefore, P -adically
vP (g(0))-Lipschitz for all P ∈ F by Remark 2.

For P ∈ F0, vP (g(0)) = 0 and hence f is P -adically 0-Lipschitz for all P ∈ F0.
For P ∈ P,

vP (g(0)) = γP =

mP∑
k=1

γk(P ) =

mP∑
k=1

||P ||mP−k =

mP−1∑
j=0

||P ||j =
1− ||P ||mP

1− ||P ||
.

f is, therefore, P -adically lP -Lipschitz for all P ∈ F , for the values of lP stated
in the Lemma.

Corollary 1. Let D be a Dedekind domain with finite residue fields, F a finite
set of maximal ideals, and a0, . . . , an distinct elements of D. For each P ∈ F , let
mP ≥ max1≤i≤n vP (ai − a0).

Then there exists f ∈ Int(D) with f(ai) = 0 for 1 ≤ i ≤ n, and f(a0) = 1,
and such that f is P -adically L(||P || ,mP )-Lipschitz for all P ∈ F .

Proof. For each 1 ≤ i ≤ n and P ∈ F , let mP (i) = vP (ai − a0) and lP (i) =
L(||P || ,mP (i)). Let fi ∈ Int(D) with fi(ai) = 0 and fi(a0) = 1 and such that fi is
P -adically L(||P || ,mP (i))-Lipschitz for each P ∈ F . Such an fi exists by Lemma 2,
and it is P -adically L(||P || ,mP )-Lipschitz, because mP (i) ≤ mP , and L(q,m) is
an increasing function in m for fixed q, and l-Lipschitz implies l′-Lipschitz for all
for all l′ ≥ l. Now set f(x) =

∏n
i=1 fi(x).

4 Interpolation by congruence-preserving integer-valued
polynomials

Lemma 3. Let D be a Dedekind domain with finite residue fields and r0, . . . , rn
distinct elements of D.

Let F be a finite set of maximal ideals of D. For each P ∈ F , let kP ∈ IN
such that the ri are pairwise incongruent modulo P kP and lP = L(||P || , kP − 1)
as in Definition 2.

Then there exists f ∈ Int(D) such that

1. f(r0) = 1 and, for 1 ≤ i ≤ n, f(ri) = 0;
2. for each P ∈ F , for every r ∈ D \ (r0 + P kP ), f(r) ≡ 0 mod P kP ;
3. for each P ∈ F , for every r ∈ r0 + P kP+lP , f(r) ≡ 1 mod P kP .

Proof. We will first construct a polynomial fP ∈ Int(D) for each P ∈ F , in
several steps. Fix P ∈ F .
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Extend r0, . . . , rn to a complete set of residues r0, . . . , r||P ||kP−1 modulo P kP ,

such that for all i > n and all Q ∈ F \ {P}, ri ≡ r1 modulo QkQ+1.

Let C be a finite subset of
∏

Q∈F Q
kQ containing a complete system of residues

of the residue classes of P kP+lP contained in P kP , and with 0 ∈ C.

For each 1 ≤ i < ||P ||kP , and c ∈ C, let fic a polynomial in Int(D) with
fic(r0) = 1, fic(ri + c) = 0, and Q-adically lQ-Lipschitz for all Q ∈ F , such as we
know to exist by Lemma 2 and its Corollary. Set fi =

∏
c∈C fic. Then fi(ri) = 0

and fi(r0) = 1. Also, since
⋃

c∈C ri + c+ P kP+lP = ri + P kP and fi(ri + c) = 0

for all c ∈ C, the P -adic Lipschitz property implies that for all r ∈ ri + P kP ,
fi(r) ≡ 0 modulo P kP . Likewise, the Lipschitz properties of the polynomials fic
imply for all Q ∈ F that fi(r) ≡ 1 modulo QkQ for all r ∈ r0 +QkQ+lQ .

Let fP =
∏||P ||kP−1

i=1 fi. Then fP satisfies

1. fP (r0) = 1 and fP (rj) = 0 for 1 ≤ j ≤ n;

2. fP (r) ≡ 0 modulo P kP for r ∈ D \ (r0 + P kP );

3. for all Q ∈ F , for all r ∈ r0 +QkQ+lQ , fP (r) ≡ 1 modulo QkQ .

Having constructed fP for each P ∈ F , we set f =
∏

P∈F fP , and f has the
desired properties.

Theorem 1. Let D be a Dedekind domain with finite residue fields, r0, . . ., rn
distinct elements of D and s0, . . ., sn arbitrary elements of D.

Let F be a finite set of maximal ideals of D. For each P ∈ F let kP ∈ IN
such that the ri are pairwise incongruent modulo P kP .

Then there exists f ∈ Int(D) such that

1. for 0 ≤ i ≤ n,

f(ri) = si

2. for all P ∈ F , for all a, b ∈ D,

a ≡ b mod P kP =⇒ f(a) ≡ f(b) mod P kP .

3. for all P ∈ F , for all r ∈ D with (r + P kP ) ∩ {r0, . . . , rn} = ∅,

f(r) ≡ 0 mod P kP .

Proof. It suffices to show, for each index i, the existence of a polynomial hi ∈
Int(D) such that

1. hi(ri) = 1 and hi(rj) = 0 for j 6= i,

2. for all P ∈ F , for all r ∈ D \ (ri + P kP ), hi(r) ≡ 0 mod P kP , and

3. for all P ∈ F , for all r ∈ ri + P kP , hi(r) ≡ 1 mod P kP ,
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because, then, the polynomial f =
∑n

i=0 sihi does the job.
W.l.o.g., assume i = 0. We construct h0 with the help of Lemma 3:
For each Q ∈ F , let lQ = L(||Q|| , kQ − 1).
Let C be a subset of

∏
Q∈F Q

kQ containing, for each Q ∈ F , a complete

system of residues of the residue classes of QkQ+lQ contained in QkQ , and with
0 ∈ C.

For each d ∈ C, r0+d, r1, . . . , rn satisfy the premises of Lemma 3. Accordingly,
let fd ∈ Int(D) such that

1. fd(r0 + d) = 1 and, for 1 ≤ i ≤ n, fd(ri) = 0;
2. for each P ∈ F , for every r ∈ D \ (r0 + d+ P kP ), fd(r) ≡ 0 mod P kP ;
3. for each P ∈ F , for every r ∈ r0 + d+ P kP+lP , fd(r) ≡ 1 mod P kP .

and set gd = 1− fd.
Since r0 + d+ P kP = r0 + P kP for all P ∈ F and d ∈ C, each gd satisfies

1. gd(r0 + d) = 0 and, for 1 ≤ i ≤ n, gd(ri) = 1;
2. for each P ∈ F , for every r ∈ D \ (r0 + P kP ), gd(r) ≡ 1 mod P kP ;
3. for each P ∈ F , for every r ∈ r0 + d+ P kP+lP , gd(r) ≡ 0 mod P kP .

Now, set g =
∏

d∈C gd.

Considering that, for all P ∈ F ,
⋃

d∈C r0 + d+ P kP+lP = r0 + P kP , we see
that the polynomial g =

∏
d∈C gd satisfies

1. g(r0) = 0 and, for 1 ≤ i ≤ n, g(ri) = 1;
2. for each P ∈ F , for every r ∈ D \ (r0 + P kP ), g(r) ≡ 1 mod P kP ;
3. for each P ∈ F , for every r ∈ r0 + P kP , g(r) ≡ 0 mod P kP .

Finally, we let h0 = 1− g.

Recall that a function f : D → D satisfying

a ≡ b mod I =⇒ f(a) ≡ f(b) mod I,

where D is a commutative ring and I an ideal of D, is called I-congruence
preserving. In this case, f defines a function f̄I : D/I → D/I by

f̄I(a+ I) = f(a) + I.

We call f̄I the function induced by f on D/I.
We can now sharpen Theorem 1 some more to obtain a completely general

form of simultaneous interpolation and P -adic approximation. Given arbitrary
arguments and values in D and, for finitely many maximal ideals, a function
on the residue class ring modulo a power of the ideal, we can find a polynomial
in Int(D) that interpolates, while simultaneously realizing the given functions
on the residue class rings, provided that the requirements are not obviously
contradictory.
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Theorem 2. Let D be a Dedekind domain with finite residue fields, r0, . . ., rn
distinct elements of D and s0, . . ., sn arbitrary elements of D.

Let F be a finite set of maximal ideals of D. For each P ∈ F let kP ∈ IN a
natural number, and

ϕP : D/P kP → D/P kP

a function.
If, for all P ∈ F and for all 0 ≤ i ≤ n,

si ∈ ϕP (ri + P kP )

then there exists f ∈ Int(D) such that

1. for 0 ≤ i ≤ n,
f(ri) = si

2. for all P ∈ F , for all a, b ∈ D,

a ≡ b mod P kP =⇒ f(a) ≡ f(b) mod P kP

and the function f̄ : D/P kP → D/P kP defined by f̄(a+ P kP ) = f(a) + P kP

equals ϕP .

Proof. We may, w.l.o.g., assume that for all P ∈ F the arguments ri are pairwise
incongruent modulo P kP . If they are not, we replace each kP by a possibly
larger lP such that the ri are incongruent modulo P lP , and replace each ϕP by
a function

ψP : D/P lP → D/P lP

which preserves congruences modulo P kP + P lP , induces ϕP on D/P kP and
satisfies ψP (ri + P lP ) = si + P lP .

Now assume that the ri are pairwise incongruent modulo P kP . We apply
Theorem 1 to produce g ∈ Int(D) such that

1. for 0 ≤ i ≤ n, g(ri) = si
2. for all P ∈ F , g is P kP -congruence preserving
3. for all P ∈ F , for all r ∈ D such that (r + P kP ) contains no ri, we have
g(r) ≡ 0 mod P kP .

Let F ′ be the subset of F consisting of those P for which r0, . . . , rn do not
form a complete system of residues modulo P kP . For all P ∈ F \ F ′, g already
induces ϕP on D/P kP . We now modify g by adding a polynomial fQ ∈ Int(D)
for each Q ∈ F ′ to the effect that ϕQ is induced on D/QkQ , without affecting the
properties 1 and 2 of g and without changing the function induced on D/P kP

for any P ∈ F \ {Q}.
Fix Q ∈ F ′. To construct fQ, first extend r0, . . . , rn to a complete system of

residues r0, . . . , rn, rn+1, . . . , rq−1 modulo QkQ .
Then, for each i with n < i < q, use Theorem 1 to find hi ∈ Int(D) which is

QkQ -congruence preserving and satisfies hi(ri) = 1 and hi(rj) = 0 for 0 ≤ j < q
with j 6= i.
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Also, for n < i < q, let bi ∈ ϕQ(ri +QkQ) such that bi ≡ 0 mod P kP for all
P ∈ F \ {Q}. Then, set

fQ =

q−1∑
i=n+1

bihi.

Having thus defined fQ for each Q ∈ F ′, finally, set

f = g +
∑
Q∈F ′

fQ.
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