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Abstract. An irreducible element of a commutative ring is absolutely irre-
ducible if no power of it has more than one (essentially different) factorization
into irreducibles. In the case of the ring Int(D) = {f ∈ K[x] | f(D) ⊆ D}, of
integer-valued polynomials on a principal ideal domain D with quotient field
K, we give an easy to verify graph-theoretic sufficient condition for an ele-
ment to be absolutely irreducible and show a partial converse: the condition
is necessary and sufficient for polynomials with square-free denominator.

1. Introduction

An intriguing feature of non-unique factorization (of elements of an integral
domain into irreducibles) is the existence of non-absolutely irreducible elements,
that is, irreducible elements some of whose powers allow several essentially different
factorizations into irreducibles [1, 5, 6, 7, 8].

For rings of integers in number fields, their existence actually characterizes non-
unique factorization, as Chapman and Krause [3] have shown.

Here, we investigate absolutely and non-absolutely irreducible elements in the
context of non-unique factorization into irreducibles in the ring of integer-valued
polynomials on D

Int(D) = {f ∈ K[x] | f(D) ⊆ D},
where D is a principal ideal domain and K is its quotient field.

In an earlier paper [4, Remark 3.9] we already hinted at a graph-theoretic suf-
ficient condition for f ∈ Int(D) to be irreducible. We spell this out more fully in
Theorem 1. The condition is not, however, necessary.

We formulate a similar graph-theoretic sufficient condition for f ∈ Int(D) to
be absolutely irreducible in Theorem 2, and show a partial converse. Namely, our
criterion for absolute irreducibility is necessary and sufficient in the special case of
polynomials with square-free denominator, cf. Theorem 3.

First, we recall some terminology. Let R be a commutative ring with identity.
(i) r ∈ R is called irreducible in R (or, an atom of R) if it is a non-zero

non-unit that is not a product of two non-units of R.
(ii) A factorization (into irreducibles) of r in R is an expression

r = a1 · · · an (1)
where n ≥ 1 and ai is irreducible in R for 1 ≤ i ≤ n.

(iii) r, s ∈ R are associated in R if there exists a unit u ∈ R such that r = us.
We denote this by r ∼ s.
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(iv) Two factorizations into irreducibles of the same element,
r = a1 · · · an = b1 · · · bm, (2)

are called essentially the same if n = m and, after a suitable re-indexing,
aj ∼ bj for 1 ≤ j ≤ m. Otherwise, the factorizations in (2) are called
essentially different.

Definition 1.1. Let R be a commutative ring with identity. An irreducible element
c ∈ R is called absolutely irreducible (or, a strong atom), if no power cn with n ≥ 1
has more than one essentially different factorization into irreducibles.

Note the following fine distinction: an element of R that is called “not absolutely
irreducible” might not be irreducible at all, whereas a “non-absolutely irreducible”
element is assumed to be irreducible, but not absolutely irreducible.

We now concentrate on integer-valued polynomials over a principal ideal domain.
Recall that a polynomial in D[x], where D is a principal ideal domain, is called

primitive if the greatest common divisor of its coefficients is 1.

Definition 1.2. Let D be a principal ideal domain with quotient field K, and
f ∈ K[x] a non-zero polynomial. We write f as

f =
a
∏
i∈I gi

b
,

where a, b ∈ D \ {0} with gcd(a, b) = 1, I a finite (possibly empty) set, and each gi
primitive and irreducible in D[x] and call this the standard form of f .

We refer to b as the denominator, to a as the constant factor, and to a
∏
i∈I gi as

the numerator of f , keeping in mind that each of them is well-defined and unique
only up to multiplication by units of D.

Definition 1.3. For f ∈ Int(D), the fixed divisor of f , denoted d(f), is the ideal
of D generated by f(D).

An integer-valued polynomial f ∈ Int(D) with d(f) = D is called image-
primitive.

When D is a principal ideal domain, we may, by abuse of notation, write the
generator for the ideal, as in d(f) = c meaning d(f) = cD.

Remark 1.4. Let D be a principal ideal domain with quotient field K, and f ∈
K[x] written in standard form as in Definition 1.2. Then f is in Int(D) if and only
if b divides d(

∏
i∈I gi).

Remark 1.5. Let D be a principal ideal domain with quotient field K. Then any
non-constant irreducible element of Int(D) is necessarily image-primitive. Other-
wise, if a prime element p ∈ D divides d(f), then

f = p · f
p

is a non-trivial factorization of f .
Furthermore, f ∈ K[x] \ {0} (written in standard form as in Definition 1.2) is

an image-primitive element of Int(D) if and only if (up to multiplication by units)
a = 1 and b = d(

∏
i∈I gi).

Definition 1.6. Let D be a principal ideal domain. For f ∈ Int(D), and p a prime
element in D, we let

dp(f) = vp(d(f))

Remark 1.7. By the above definition,

d(f) =
∏
p∈P

pdp(f) and dp(f) = min
c∈D

vp(f(c))
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where P is a set of representatives of the prime elements of D up to multiplication
by units.

By the nature of the minimum function, the fixed divisor is not multiplicative:

dp(f) + dp(g) ≤ dp(fg),

but the inequality may be strict. Accordingly,

d(f)d(g)
∣∣ d(fg),

but the division may be strict. Note, however, that

d(fn) = d(f)n

for all f ∈ Int(D) and n ∈ N.

2. Graph-theoretic irreducibility criteria

Definition 2.1. Let D be a principal ideal domain, I 6= ∅ a finite set and for i ∈ I,
let gi ∈ D[x] be non-constant and primitive. Let g(x) =

∏
i∈I gi, and p ∈ D be

prime.
(i) We say that gi is essential for p among the gj with j ∈ I if p

∣∣ d(g) and
there exists a w ∈ D such that vp(gi(w)) > 0 and vp(gj(w)) = 0 for all
j ∈ I \ {i}. Such a w is then called a witness for gi being essential for p.

(ii) We say that gi is quintessential for p among the gj with j ∈ I if p
∣∣ d(g)

and there exists w ∈ D such that vp(gi(w)) = vp(d(g)) and vp(gj(w)) = 0
for all j ∈ I \ {i}. Such a w is called a witness for gi being quintessential
for p.

We will omit saying “among the gj with j ∈ I” if the indexed set of polynomials is
clear from the context.

Remark 2.2. When we consider an indexed set of polynomials gi with i ∈ I,
we are not, in general, requiring gi 6= gj for i 6= j. Note, however, that gi being
essential (among the gj with j ∈ I) for some prime element p ∈ D implies gi 6∼ gj
in D[x] for all j ∈ I \ {i}.

Definition 2.3. Let D be a principal ideal domain, p ∈ D a prime element, I 6= ∅
a finite set and for each i ∈ I, gi ∈ D[x] primitive and irreducible.

(i) The essential graph of the indexed set of polynomials (gi | i ∈ I) is the
simple undirected graph whose set of vertices is I, and in which (i, j) is an
edge if and only if there exists a prime element p in D such that both gi
and gj are essential for p.

(ii) The quintessential graph of the indexed set of polynomials (gi | i ∈ I) is
the simple undirected graph whose set of vertices is I, and in which (i, j)
is an edge if and only if there exists a prime element p in D such that both
gi and gj are quintessential for p.

Lemma 2.4. Let D be a principal ideal domain and f ∈ Int(D) a non-constant
image-primitive integer-valued polynomial, written in standard form according to
Definition 1.2 as

f =
∏
i∈I gi∏
p∈T p

ep
,

where T is a finite set of pairwise non-associated primes of D, and let n ∈ N.
Every h ∈ Int(D) dividing fn can be written as

h(x) =
∏
i∈I g

γi(h)
i∏

p∈T p
βp(h) ,
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with γi(h) ∈ N0 for i ∈ I and unique βp(h) ∈ N0 for p ∈ T . Moreover, every such
representation of h satisfies:

(i) If q ∈ T and j ∈ I such that gj is quintessential for q among the i ∈ I,
then

βq(h) = eqγj(h).
(ii) In particular, whenever gj and gk are both quintessential for the same

prime q ∈ T , then γj(h) = γk(h).

Proof. We know d(fn) = d(f)n (cf. Remark 1.7). So, fn is image-primitive, and,
therefore, all polynomials in Int(D) dividing fn are image-primitive. Let fn = hk
with h, k ∈ Int(D). When h is written in standard form as in Definition 1.2, the
fixed divisor of the numerator equals the denominator, and the constant factor is
a unit. The same holds for k. This is so because h and k are image-primitive; see
Remark 1.5.

Now let q ∈ D be prime and j ∈ I such that gj is quintessential for q. Note
that, by Remark 2.2 and unique factorization in K[x], the exponent of gj in the
numerator of any factor of fn is unique.

Writing fn = hk as∏
i∈I g

n
i∏

p∈T p
nep

=
∏
i∈I g

γi(h)
i∏

p∈T p
βp(h) ·

∏
i∈I g

γi(k)
i∏

p∈T p
βp(k) ,

we observe equalities and inequalities of the exponents, which, together, imply
eqγj(h) = βq(h) and eqγj(k) = βq(k); namely:

(i) neq = βq(h) + βq(k)
(ii) n = γj(h) + γj(k) and hence neq = eqγj(h) + eqγj(k)
(iii) eqγj(h) ≥ βq(h) and eqγj(k) ≥ βq(k)

(i) follows from unique factorization in D.
(ii) follows from unique factorization in K[x] and Remark 2.2.
To see (iii), consider a witness w for gj being quintessential for q. Since f is

image-primitive, eq = vq(d(
∏
i∈I gi)), by Remark 1.5. From Definition 2.1 and

Remark 1.4 we deduce

eqγj(h) = vq(gj(w))γj(h) = vq(g
γj(h)
j (w)) = vq

(∏
i∈I

gi(w)γi(h)

)
≥ βq(h)

(and similarly for k instead of h). �

Theorem 1. Let D be a principal ideal domain with quotient field K. Let f ∈
Int(D) be a non-constant image-primitive integer-valued polynomial, written in
standard form as f = g/b with b ∈ D \ {0}, and g =

∏
i∈I gi, where each gi is

primitive and irreducible in D[x].
If the essential graph of (gi | i ∈ I) is connected, then f is irreducible in Int(D).

Proof. If |I| = 1, then f is irreducible in K[x], and, by being image-primitive, also
irreducible in Int(D).

Now assume |I| > 1, and suppose f can be expressed as a product of m non-
units f = f1 · · · fm in Int(D). Since d(f) = 1, we see immediately that no fi is a
constant, and that d(fk) = 1 for every 1 ≤ k ≤ m.

Write fk = hk/bk with bk ∈ D and hk primitive in D[x]. Then b = b1 · · · bm and
there exists a partition of I into non-empty pairwise disjoint subsets I =

⋃m
i=1 Ik,

such that hk =
∏
i∈Ik

gi.
Select i ∈ I1 and j ∈ I with j 6= i. We show that also j ∈ I1. Let i =

i0, i1, . . . , is = j be a path from i to j in the essential graph of (gi | i ∈ I). For
some prime element p in D dividing b, gi0 and gi1 are both essential for p. As gi
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is essential for p, p cannot divide any bk with k 6= 1 and, hence, p divides b1. For
any gk essential for p it follows that k ∈ I1, and, in particular, i1 ∈ I1. The same
argument shows for any two adjacent vertices ik and ik+1 in the path that they
pertain to the same Ik, and, finally, that j ∈ I1.

As j ∈ I was arbitrary, I1 = I and m = 1. �

Theorem 2. Let D be a principal ideal domain and f ∈ Int(D) be non-constant
and image-primitive, written in standard form as

f =
∏
i∈I gi∏
p∈T p

ep
,

where I 6= ∅ is a finite set and for i ∈ I, gi ∈ D[x] is primitive and irreducible in
D[x].

If the quintessential graph G of (gi | i ∈ I) is connected, then f is absolutely
irreducible.

Proof. Suppose

fn =
s∏
l=1

fl, where fl =
∏
i∈I g

ml(i)
i∏

p∈T p
kl(p)

and 0 ≤ ml(i) ≤ n, 0 ≤ kl(p) ≤ nep and for all i,
∑s
l=1 ml(i) = n and for all p,∑s

l=1 kl(p) = nep.
Fix t with 0 ≤ t ≤ s. We show that ft is a power of f by showing that each gi

with i ∈ I occurs in the numerator of ft with the same exponent.
Let i, j ∈ I. By the connectedness of the quintessential graph, there exists a

sequence of indices in I, i = i0, i1, i2, . . . , ik = j and for each h, a prime element
ph in T such that gih and gih+1 are both quintessential for ph. By Lemma 2.4, gih
and gih+1 occur in the numerator of ft with the same exponent. Eventually, gi and
gj occur in the numerator of ft with the same exponent, for arbitrary i, j ∈ I. In
an image-primitive polynomial, the numerator determines its denominator (as in
Remark 1.5) and, hence, ft is a power of f . Since ft is irreducible, ft = f . �

Corollary 2.5. The binomial polynomial(
x

p

)
= x(x− 1) · · · (x− p+ 1)

p!
where p ∈ Z is a prime, is absolutely irreducible in Int(Z).

Theorem 3. Let D be a principal ideal domain and f ∈ Int(D) be non-constant
and image-primitive, with square-free denominator, written in standard form as

f =
∏
i∈I gi∏
p∈T p

,

where I 6= ∅ is a finite set and for i ∈ I, gi ∈ D[x] is primitive and irreducible in
D[x].

Then f is absolutely irreducible if and only if the quintessential graph G of (gi |
i ∈ I) is connected.

Proof. In view of Theorem 2, we only need to show necessity. If |I| = 1, then G is
connected. Now assume |I| > 1, and suppose G is not connected.
I is the disjoint union of J1 and J2 (both non-empty) such that there is no edge

(i, j) with i ∈ J1 and j ∈ J2. Let S1 be the set of those primes p in T such that
some gi with i ∈ J1 is quintessential for p, and S2 defined similarly in relation to
J2. Then S1 ∩ S2 = ∅. We express T as a disjoint union of T1 and T2 with Si ⊆ Ti
for i = 1, 2 (assigning the primes not in S1 ∪ S2 to T1 or T2 arbitrarily).
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Then f3 factors in Int(D) as follows:

f3 =
(∏

i∈J1
gi
)2∏

j∈J2
gj(∏

p∈T1
p
)2∏

q∈T2
q
·

(∏
j∈J2

gj

)2∏
i∈J1

gi(∏
q∈T2

q
)2∏

p∈T1
p
.

As Int(D) is atomic (cf. [2]), the fact that J1 and J2 are both non-empty implies
the existence of a factorization of f3 into irreducibles essentially different from
f · f · f . �

If f(x) =
∏
i∈I gi(x)/p, where D is a principal ideal domain, p a prime of D and

gi ∈ D[x] primitive and irreducible in D[x] for i ∈ I, then it is easy to see that f is
an irreducible element of Int(D) if and only if d(

∏
i∈I gi(x)) = p and for each i ∈ I

there exists wi ∈ D such that vp(gi(wi)) > 0 and vp(gj(wi)) = 0 for all j ∈ I \ {i}.
We can now state the following refinement:
Corollary 2.6. Let D be a principal ideal domain, p ∈ D a prime element and
I 6= ∅ a finite set. For i ∈ I, let gi ∈ D[x] be primitive and irreducible in D[x]. Let

f(x) =
∏
i∈I gi(x)
p

.

Then f is an absolutely irreducible element of Int(D) if and only if d(
∏
i∈I gi(x)) =

p and for each i ∈ I there exists wi ∈ D such that vp(gi(wi)) = 1 and vp(gj(wi)) = 0
for all j ∈ I \ {i}.
Proof. If d(

∏
i∈I gi(x)) = p, then f ∈ Int(D) with d(f) = 1, and Theorem 3

applies. If, on the other hand, f is in Int(D) and is absolutely irreducible, then f
is, in particular, irreducible and therefore d(f) = 1, and, again, Theorem 3 applies.
Now the statement follows from the fact that, whenever d(

∏
i∈I gi(x)) = p, the

quintessential graph of (gi | i ∈ I) is connected if and only if every gi is quintessential
for p. �
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