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Abstract. We examine the minimal distance (number of differing entries) be-

tween different group tables of the same order n. Here group table means a

matrix of order n with entries from a fixed set of n symbols, which (with

suitable border elements) is the multiplication table of a group. (The bor-

der elements are not considered part of the table. A group is defined up to

isomorphism by its multiplication table without border elements.) With the

exception of some pairs of groups of orders 4 and 6, which are listed expli-

citly, different group tables of order n differ in at least 2n places; and with

the exception of some pairs of groups of orders 4, 6, 8 and 9, which are listed

explicitly, tables of non-isomorphic groups of order n always differ in strictly

more than 2n places.

1. Introduction

We use the notion of group table, or Cayley table of a group, that is set forth

in [2]: for every natural number n we consider all binary operations defined on the

set n = {1, . . . , n} that satisfy the group axioms; a group table is a multiplication

table of such a group (n, ·). By the existence of an identity, some column contains

the elements in the same order as they appear on the vertical border of the table

and some row is equal to the horizontal border. The border is not regarded as

part of the table, however. The abstract group defined (up to isomorphism) by the

multiplication table is uniquely determined by the remaining n×nmatrix, since any

row and column can be used as borders: the resulting operations define isomorphic
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342 S. FRISCH

groups. A group table is necessarily a Latin square, that is, a matrix whose every

row and every column contains every symbol from n exactly once. Given a group

table A = (ai,j) of order n, the set of all tables arising from the same abstract

group is the orbit of A under Sn × Sn × Sn, acting on Latin squares by permuting

rows, columns and names of entries: (π, σ, ρ)A = (a′

i,j) with a′

i,j = ρ(aπ(i),σ(j)).

In [1] J. Dénes investigates how many entries can be deleted from a group

table such that it remains uniquely reconstructible, and claims [1; Theorem 1 and

Corollary] that two arbitrary group tables of order n 6= 4 differ in at least 2n

places. In contrast to this we exhibit a pair of tables of the cyclic group of order

6 of distance 9 (by “distance” we always mean Hamming distance, or number of

differing entries.)

1 2 3 4 5 6

2 3 1 5 6 4

3 1 2 6 4 5

4 5 6 2 3 1

5 6 4 3 1 2

6 4 5 1 2 3

1 2 3 4 5 6

2 3 1 5 6 4

3 1 2 6 4 5

4 5 6 1 2 3

5 6 4 2 3 1

6 4 5 3 1 2

Dénes makes two statements: 1) two different group tables of the same group

G of order n differ in at least 2n places [1; Lemma 2], and 2) group tables of non-

isomorphic groups of order n 6= 4 differ in at least 2n places [1; Lemma 3]. These

are reproduced in [2] and also in [3], where 1) is acknowledged to be false, but

no corrected version is given. While 1) is incorrect (Dénes’ proof wrongly assumes

that any table of a group can be transformed into any other by permuting rows and

columns), 2) is correct and its proof can be adapted to cover the case of different

tables of the same group. We shall show that exceptions to 1) occur only between

tables of the cyclic group of order 4 and between tables of the cyclic group of order

6. By suggestion of the referee we will also classify all pairs of non-isomorphic

groups that admit tables of distance 2n or less. Note that every group of order

n > 1 has tables that differ in exactly 2n places: one can get such, for instance, by

interchanging two rows in a table.

2. Results

Theorem 1. Different tables of groups of order n differ in at least 2n places, except

for the following three pairs of groups, for which we give the minimal distance

between different tables below:

Z2 × Z2 and Z4: minimal distance 4,
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On the minimal distance between group tables 343

Z4 and Z4: minimal distance 7,

Z6 and Z6: minimal distance 8.

Corollary. Different tables of groups of order n 6∈ {4, 6} differ in at least 2n places.

Theorem 2. Tables of non-isomorphic groups of order n always differ in strictly

more than 2n places, except for the pair Z2 × Z2 and Z4 that has tables of distance

4 and the following pairs of groups, for which the minimal distance between tables

is 2n:

Z6 and D3; Z8 and Z2 × Z4; any pair of non-cyclic groups of order 8; and Z9

and Z3 × Z3.

Corollary. Tables of non-isomorphic groups of order n > 9 differ in more than 2n

places.

Tables of groups of order n of distance less than 2n. Tables of Z2 × Z2 (left)

and Z4 (the other three tables), where the table of Z2 × Z2 is of distance 4 from

each table of Z4, while different tables of Z4 differ in 7 places (these are all possible

group tables of order 4 with first row and first column in natural order):

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

1 2 3 4

2 1 4 3

3 4 2 1

4 3 1 2

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

1 2 3 4

2 4 1 3

3 1 4 2

4 3 2 1

Two tables of Z6 of distance 8:

1 2 3 4 5 6

2 1 4 3 6 5

3 4 6 5 1 2

4 3 5 6 2 1

5 6 1 2 4 3

6 5 2 1 3 4

1 2 3 4 5 6

2 1 4 3 6 5

3 4 5 6 1 2

4 3 6 5 2 1

5 6 1 2 3 4

6 5 2 1 4 3
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344 S. FRISCH

Tables of non-isomorphic groups of distance 2n. Tables of Z2 × Z2 × Z2 (upper

left), Q8 (upper right), Z2 × Z4 (lower left) and D4 (lower right) of distance 16

from each other. (Differences from the table of Z2 × Z2 × Z2 are marked):

1 2 3 4 5 6 7 8

2 1 4 3 6 5 8 7

3 4 1 2 7 8 5 6

4 3 2 1 8 7 6 5

5 6 7 8 1 2 3 4

6 5 8 7 2 1 4 3

7 8 5 6 3 4 1 2

8 7 6 5 4 3 2 1

2 1 3 4 5 6 7 8

1 2 4 3 6 5 8 7

3 4 1 2 7 8 6 5

4 3 2 1 8 7 5 6

5 6 8 7 1 2 3 4

6 5 7 8 2 1 4 3

7 8 5 6 4 3 1 2

8 7 6 5 3 4 2 1

2 1 3 4 5 6 7 8

1 2 4 3 6 5 8 7

3 4 1 2 7 8 6 5

4 3 2 1 8 7 5 6

5 6 7 8 2 1 3 4

6 5 8 7 1 2 4 3

7 8 6 5 3 4 1 2

8 7 5 6 4 3 2 1

2 1 3 4 5 6 8 7

1 2 4 3 6 5 7 8

4 3 1 2 7 8 6 5

3 4 2 1 8 7 5 6

5 6 7 8 1 2 3 4

6 5 8 7 2 1 4 3

7 8 5 6 3 4 1 2

8 7 6 5 4 3 2 1

Tables of D3 (left) and Z6 of distance 12:

1 2 3 4 5 6

2 3 1 6 4 5

3 1 2 5 6 4

4 5 6 1 2 3

5 6 4 3 1 2

6 4 5 2 3 1

1 2 3 4 5 6

2 3 1 6 4 5

3 1 2 5 6 4

4 6 5 2 1 3

5 4 6 1 3 2

6 5 4 3 2 1

Tables of Z8 (left) and Z2 × Z4 of distance 16:

1 2 3 4 5 6 7 8

2 1 4 3 6 5 8 7

3 4 2 1 7 8 6 5

4 3 1 2 8 7 5 6

5 6 7 8 3 4 2 1

6 5 8 7 4 3 1 2

7 8 6 5 2 1 4 3

8 7 5 6 1 2 3 4

1 2 3 4 5 6 7 8

2 1 4 3 6 5 8 7

3 4 2 1 7 8 6 5

4 3 1 2 8 7 5 6

5 6 7 8 1 2 3 4

6 5 8 7 2 1 4 3

7 8 6 5 3 4 2 1

8 7 5 6 4 3 1 2
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Tables of Z3 × Z3 (left) and Z9 of distance 18:

1 2 3 4 5 6 7 8 9

2 3 1 5 6 4 8 9 7

3 1 2 6 4 5 9 7 8

4 5 6 7 8 9 1 2 3

5 6 4 8 9 7 2 3 1

6 4 5 9 7 8 3 1 2

7 8 9 1 2 3 4 5 6

8 9 7 2 3 1 5 6 4

9 7 8 3 1 2 6 4 5

1 2 3 4 5 6 7 8 9

2 3 1 5 6 4 8 9 7

3 1 2 6 4 5 9 7 8

4 5 6 8 9 7 1 2 3

5 6 4 9 7 8 2 3 1

6 4 5 7 8 9 3 1 2

7 8 9 1 2 3 6 4 5

8 9 7 2 3 1 4 5 6

9 7 8 3 1 2 5 6 4

3. A few lemmata

Lemma 1. Let A and A′ be group tables of order n such that some pair of corres-

ponding rows is of distance d. If every pair of corresponding rows is of distance

less than n−d
3 then the groups are isomorphic.

Proof. Let A and A′ be tables of groups G and G′ as indicated, of distance d in

row x. Let π be the permutation that, applied to the columns of A, would arrange

the elements in row x in the same order as they appear in row x of in A′, then π

moves exactly d letters. Viewed as a permutation of the elements in row x of A′,

the i-th row of A is ψiπ and the i-th row of A′ is ϕi, where P ′ = {ϕ1, . . . , ϕn}

is a regular permutation representation of G′ and P = {ψ1, . . . , ψn} is one of G.

We claim that f :P −→ P ′, f(ψi) = ϕi is an isomorphisms of groups. Since ϕi

differs from ψiπ and ϕj from ψjπ in less than (n− d)/3 places each, ϕiϕ
−1
j differs

from ψiψ
−1
j = ψiπ(ψjπ)−1 in less than 2(n− d)/3 places. Therefore ϕiϕ

−1
j , which

occurs in some row of A′, differs from ψiψ
−1
j π, which occurs in some row of A, in

e < d+ 2(n− d)/3 places.

Since ψiψ
−1
j π has n− e > (n− d)/3 values in common with ϕiϕ

−1
j these ele-

ments must occupy corresponding rows, since ψiψ
−1
j π would differ from every other

element of P ′ in at least n− e > (n−d)/3 places, and we know that corresponding

rows are of distance less than (n − d)/3. This means f(ψiψ
−1
j ) = ϕiϕ

−1
j for all

i, j. Now it is an easy exercise that every function between groups that satisfies

f(ab−1) = f(a)f(b)−1 is a homomorphism.

Regular permutations of small distance. Consider multiplying a permutation ϕ

from the left by a permutation π that fixes all but a few letters, πϕ = ψ. Every
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346 S. FRISCH

letter whose image under ϕ is not moved by π has the same image under ψ, and

every letter that is not moved by π has the same pre-image under ψ as under ϕ.

Therefore every block of letters in the cycle representation of ϕ starting with a

letter x moved by π and reaching up to the next letter moved by π also occurs as

a block of adjacent letters in the cycle representation of ψ. We can multiply ϕ by

π by considering only the letters moved by π and treating each block x̄ (starting

with the letter x moved by π) just like the letter x. Cycles of ϕ that do not contain

elements moved by π of course remain completely unchanged. We illustrate this

by an example:

(a b c d) · (a b c)(d) = (a c b d), therefore (a b c d) · (ā b̄ c̄)(d̄) 〈. . .〉 = (ā c̄ b̄ d̄) 〈. . .〉,

where x̄ represents the block of digits starting with x and 〈. . .〉 stands for possible

additional cycles not containing any of the letters moved by π = (a b c d).

(For multiplication with π from the right, one uses the blocks of letters that

end with a letter moved by π, beginning just after the previous occurrence of a

letter moved by π in each cycle of ϕ.)

Lemma 2. Here ā, b̄, c̄, d̄ represent non-empty blocks of digits, and 〈. . .〉 denotes

possible additional cycles, which the permutations in question have in common.

The pairs of regular permutations are unordered pairs.

(I) Every pair of regular permutations of distance 2 is of the form (ā)(b̄) and

(ā b̄), where ā and b̄ are blocks equal length (and therefore 2 | n).

(II) Every pair of regular permutations of distance 3 is of the form

(1) (ā b̄ c̄)〈. . .〉 and (ā c̄ b̄)〈. . .〉 or

(2) (ā)(b̄)(c̄) and (ā b̄ c̄) (in which case 3 | n).

(III) Every pair of regular permutations ϕ and ψ, where ϕ = πψ with π a product

of two disjoint transpositions, is of one of the following types

(1) (ā)(b̄)(c̄)(d̄) and (ā b̄)(c̄ d̄) (in which case 4 | n)

(2) (ā c̄)(b̄ d̄)〈. . .〉 and (ā d̄)(b̄ c̄)〈. . .〉

(3) (ā c̄ b̄ d̄)〈. . .〉 and (ā d̄ b̄ c̄)〈. . .〉

(4) (ā)(b̄ c̄)(d̄) and (ā b̄ d̄ c̄) (in which case 3 | n).

(IV) Every pair of regular permutations ϕ and ψ, where ϕ = πψ with π a 4-cycle,

is of one of the following types

(1) (ā)(b̄)(c̄)(d̄) and (ā b̄ c̄ d̄) (in which case 4 | n)

(2) (ā b̄ c̄ d̄) and (ā c̄)(b̄ d̄)

(3) (ā b̄ c̄)(d̄) and (ā c̄ b̄ d̄)

(4) (ā b̄)(c̄ d̄) and (ā c̄)(b̄)(d̄) (in which case 6 | n).
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Sketch of proof. We discuss case III, the others are similar. Consider all products

(a b)(c d)ϕ = ψ, where ϕ runs through all elements of the symmetric group on the

letters a, b, c and d. If we replace these letters by ā, b̄, c̄ and d̄, respectively, in the

cycles of ϕ and ψ and represent possible additional cycles which remain unchanged

by 〈. . .〉, we get a list of all possible ways in which multiplication by (a b)(c d) from

the left can transform a permutation ϕ̄ into another permutation ψ̄. We identify

the cases that only differ by a renaming of letters or by interchanging ϕ̄ and ψ̄.

We omit the cases that are incompatible with the requirement that ϕ and ψ

be regular, such as (a b)(c d) · (ā b̄)(c̄)(d̄) 〈. . .〉 = (ā)(b̄)(c̄ d̄) 〈. . .〉. (If ϕ is regular,

the length of ā is smaller than that of c̄, and greater if ψ is regular.)

We also omit the mention of additional cycles 〈. . .〉 common to ϕ and ψ, if the

length of cycles is different in ϕ̄ and ψ̄, since common cycles cannot exist between

regular permutations of different cycle lengths. In this way we arrive at the list of

types given.

We have already displayed group tables of the distances claimed to be minimal

in the exceptional cases of Theorems 1 and 2. It now remains to show that group

tables of order n differ in at least 2n places, unless the groups are listed in Theorem 1

as an exception (in which case we must show that the distance is at least the claimed

minimum); and further, that tables of order n and distance 2n belong to isomorphic

groups or to one of the pairs of non-isomorphic groups listed in Theorem 2.

To avoid unnecessary clutter in a proof that is already fraught with case

distinctions, we relegate some of the computational details to a separate section

following the body of the proof.

4. Proof of the theorems

Let A and A′ be tables of groups G and G′ of order n. For n = 1 or 2 the

assertions are evident; we assume n ≥ 3.

Case I: A and A′ differ in every row and every column. Since two different

permutations differ in at least 2 places, A and A′ differ in at least 2n places. If there

are exactly 2n differences, then every pair of corresponding rows is of distance 2

(and similarly for the columns) and Lemma 1 implies that the groups are isomorphic

if n > 8. Also, 2n is greater or equal than the minimal distance claimed for pairs of

non-isomorphic groups of order n < 8 and for most pairs of non-isomorphic groups

of order 8; it only remains to check that Z8 does not have a table that differs from

a table of a non-cyclic group of order 8 other than Z2 × Z4 in exactly two places

in every row and column, see (1) below.
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Case II: A and A′ agree in some row or column. Suppose A and A′ agree

in row x. (We talk about rows, but the argument works mutatis mutandis for

columns.) The rows of A and A′, interpreted as permutations of the elements

in row x, give regular permutation representations P = {ϕ1, . . . , ϕn} of G and

P ′ = {ψ1, . . . , ψn} of G′. Let H = P ∩ P ′. If the elements of H do not each occur

in the same row in both tables then we can permute the rows of one table to bring

matching elements into corresponding rows without increasing the distance of the

tables: Consider the rows where either A or A′ has an element of H and the other

table has something different; then the number of differences between A and A′

in each of these rows is n, so permuting them cannot increase the distance. We

may therefore assume that every element of H occurs in the same position in both

tables. Now let s be the number of rows in which A and A′ agree, then s = |H|

and in particular s | n.

Two Latin squares of order 3 that have a row in common consist of the same

3 rows in different order and therefore differ at 6 places. All regular permutation

groups of order 4 are given by the rows of the four tables of order 4 displayed

earlier, the possible distances between tables that agree in a row are easily found

by considering the distances between the non-identity permutations of these groups,

and we assume n > 4 from now on.

Case 1: There are no rows of distance 2.

Case 1.1: s ≤ n/4. d(A,A′) ≥ 3(n− n
4 ) = 9

4n > 2n.

Case 1.2: s = n/3. In this case, 3 | n. d(A,A′) ≥ 3(n − n
3 ) = 2n. If all

distances between different corresponding rows are 3, then, since there are rows of

distance d = 0, the groups must be isomorphic by Lemma 1 when n > 9. If the

tables differ in at least 4 places in some row, then d(A,A′) ≥ 3(n − n
3 ) + 1 > 2n.

(The pairs of non-isomorphic groups of orders 6 and 9 do admit tables of distance

2n.)

Case 1.3: s = n/2. Note that n is even in this case. Every row of distance

d gives elements ϕ ∈ P and ψ ∈ P ′ with ϕ = πψ, where π moves exactly d

elements x, y, . . . and the cycle representations of ϕ and ψ contain the same d

(non-empty) blocks of digits x̄, ȳ, . . . in different order, as described in the remark

before Lemma 2. If the length of some block is at least 3, say x̄ = x1 . . . xk with

k ≥ 3, then ϕ2(x1) = ψ2(x1) while ϕ2(xk−1) 6= ψ2(xk−1). This is impossible: since

the index of H in P ′ is 2, ψ2 ∈ H = P ∩ P ′, so ψ2 and ϕ2 are both elements of

the regular permutation group G. Therefore the blocks moved by π must be of

length at most 2, which implies d ≥ n/2. This holds for every row in which A

and A′ differ, so d(A,A′) ≥ n2/4. (In general we get, by the same principle, that

d(A,A′) ≥ (n− s)s, where s = |H|.)

For n ≥ 8 the distance between A and A′ is therefore at least 2n, and for
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n > 8 it is more than 2n. We have to check non-isomorphic groups of order 8 and

groups of order 6 separately, see (2) and (3).

Case 2: Rows of distance 2 exist. There exist ϕ = (i1 . . . in) ∈ P and σ =

(i1 . . . in/2)(i(n/2)+1 . . . in) ∈ P ′. (Note that n is even in this case, and that at least

one of the groups is cyclic.) We have P = [ϕ], [P ′ : [σ]] = 2 and P ∩ [σ] = {id}

(because every cycle of a nontrivial power of ϕ contains both im with m ≤ n/2

and il with l > n/2), therefore |P ∩ P ′| ≤ 2. Besides ϕ−1 and σ−1 there is no

further pair of permutations of this type, when n 6= 4. (If ϕk = (j1 . . . jn) ∈ P ,

1 < k < n − 1, and ρ = (j1 . . . jn/2)(j(n/2)+1 . . . jn) ∈ P ′ then each cycle of ρ

contains both im with m ≤ n/2 and il with l > n/2, therefore [σ] ∩ [ρ] = {id},

which is impossible if n 6= 4.) Only if both P and P ′ are cyclic can there be an

additional pair (j1 . . . jn) ∈ P ′ and (j1 . . . jn/2)(j(n/2)+1 . . . jn) ∈ P , a maximum of

4 rows of distance 2 in all. We get d(A,A′) ≥ 3(n− 6) + 4 · 2 = 3n− 10, and even

d(A,A′) ≥ 3(n− 4) + 2 · 2 = 3n− 8, if not both groups are cyclic. For n > 8, this

means d(A,A′) > 2n for non-isomorphic groups, and d(A,A′) ≥ 2n for two cyclic

groups. It remains to check the cases n ∈ {6, 8}, see (4).

5. The gory details

(1) We show that Z8 does not have a table that differs from a table of a non-

cyclic group of order 8 in exactly two places in every row and column. Suppose

otherwise. In the first row, the differences are in columns x and y, say. We exchange

columns x and y in A and get a table B of G that agrees with A′ in the first row.

The rows of B and A′, considered as permutations of the elements in the first

row, form a regular permutation representation P = {ϕ1, . . . , ϕ8} of G = Z8 and

P ′ = {ψ1, . . . , ψ8} of G′. Since there are precisely two differences between A and

A′ in every column, either B and A′ agree in one further row, or there are two rows

of distance 3. In both cases, ψi and ϕi differ by multiplication with a product of

two disjoint transpositions in all further rows, ψi = πiϕi, where πi = (ai bi)(ci di).

Among these rows there would be one with ϕi an 8-cycle and ψi of some other

cycle structure. By Lemma 2, III this is impossible, as 3 ∤ 8.

(2) We show that there are no tables of Z8 and a non-cyclic group other than

Z2 × Z4, that agree in four rows and are of distance 4 in each of the remaining

rows.

Suppose otherwise. The regular permutation representation of Z8 consists of

the powers of ϕ = (a1 a2 b1 b2 c1 c2 d1 d2), and H = {id, ϕ2, ϕ−2, ϕ4}. If ψ is a

regular permutation of distance 4 from ϕ then the 4 blocks of digits that occur in

different positions in the cycle representation of ψ and ϕ are each of length 2.
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Using Lemma 2, we see that the possible regular permutations of distance

4 from ϕ are α = (a1 a2)(b1 b2)(c1 c2)(d1 d2), β = (a1 d2)(b1 a2)(c1 b2)(d1 c2), γ =

(a1 a2 c1 c2)(b1 b2 d1 d2) and δ = (a1 b2 c1 d2)(b1 c2 d1 a2). For ϕ−1, the possibilities

are exactly the inverses of these permutations. The regular permutations of dis-

tance 4 from ϕ3 are α′ = (a1 b2)(b1 c2)(a2 d1)(c1 d2), β
′ = (a1 c2)(b1 d2)(c1 a2)(d1 b2)

and also γ and δ; for ϕ−3 they are the inverses of these elements. G′ \H cannot

contain only elements of order 4, because H ∪ {γ, γ−1, δ, δ−1} is not a group. We

show that if G′ \H contains an element of order 2, it also contains an element of

order 4.

If α is in a row with ϕ, then δ−1 or γ−1 must be in a row with ϕ−1, since αβ

cannot occur in a regular permutation group containing ϕ2, and similarly for β in

a row with ϕ. (The case of any of the other 8-cycles and an element of order 2

next to it, is up to conjugation the same as the one we considered.) Now that G′

has more than 2, but less than 6 elements of order 4, it can only be Z2 × Z4.

(3) Two tables of Z6 can indeed agree in 3 rows and be of distance 3 each

in the remaining rows, as show in an example earlier. By considering a regular

permutation representation of D3 and the possibilities to complete the subgroup

of order 3 to a cyclic group of order 6, one checks easily that tables of Z6 and D3

that agree in 3 rows differ in exactly 4 places in each of the remaining rows. If two

tables of D3 agree in three rows, the remaining rows are of distance at least 4 each,

because the only regular permutation that a product of transpositions could have

distance 3 to is a 6-cycle.

(4) Two tables of the cyclic group of order 8 do not admit more than 2 rows

of distance 2: If (1 2 3 4 5 6 7 8) ∈ P , (1 2 3 4)(5 6 7 8) ∈ P ′ then there is no 8-cycle

in P ′ of distance 2 to either (1 3 5 7)(2 4 6 8) or (1 7 5 3)(2 8 6 4), because it would

have to contain 4 odd numbers in a row, which is incompatible with its square

being (1 2 3 4)(5 6 7 8) or (1 4 3 2)(5 8 7 6), so that d(A,A′) ≥ 3n − 8 in this case

too. Between a table of Z8 and one of a non-cyclic group there are at most 2 rows

of distance 3, since each would involve one of the elements of order 4 of Z8, so

d(A,A′) ≥ 18.

Tables of Z6 and D3 differ by at least 12 entries in the case where rows of

distance 2 occur: If there are two rows of distance 2, then there are no rows of

distance 3, because every row of distance 3 would either involve a 6-cycle of Z6 or

a product of 3-cycles in D3, and these are all spent for the rows of distance 2. If

there is only one row of distance 2, then the inverses of the elements in this row,

which differ in 2 places, and therefore agree in 4, do not occur in the same position

and produce two rows of distance 4. Since |H| ≤ 2, the distances add up to at least

12. Tables of Z6 of distance 3n− 10 = 8 do exist, as shown earlier.
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