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Abstract. Let V be a valuation ring of a global field K. We show that for all positive integers
k and 1 < n1 ≤ . . . ≤ nk there exists an integer-valued polynomial on V , that is, an element
of Int(V ) = {f ∈ K[X] | f(V ) ⊆ V }, which has precisely k essentially different factorizations
into irreducible elements of Int(V ) whose lenghts are exactly n1, . . . , nk. In fact, we show more,
namely that the same result holds true for every discrete valuation domain V with finite residue
field such that the quotient field of V admits a valuation ring independent of V whose maximal
ideal is principal or whose residue field is finite. If the quotient field of V is a purely transcendental
extension of an arbitrary field, this property is satisfied. This solves an open problem proposed
by Cahen, Fontana, Frisch and Glaz in these cases.

1. Introduction

Non-unique factorization in integral domains has been a recurring topic in commutative ring
theory ever since the phenomenon was first discovered in rings of integers in algebraic number
fields. The machinery developed in this setting generalizes to Dedekind domains and their (po-
tentially) higher-dimensional analogues, Krull domains. Factorizations in Krull domains (more
generally in Krull monoids) are well-studied and can be described by combinatorial structure
depending only on the divisor class group and the distribution of prime divisors in the classes,
see the monograph by Geroldinger and Halter-Koch [11].

In contrast to this, the (potentially) non-Noetherian generalizations of Dedekind domains,
namely, Prüfer domains, are not amenable to the existing methods and (so far) there is no
general theory of non-unique factorization in this case. For this reason, the study of non-unique
factorizations in Prüfer domains relies on ad-hoc arguments in each particular case.

The non-Noetherian Prüfer domain where non-unique factorization was first studied is the
ring of integer-valued polynomials on Z, that is, Int(Z) = {f ∈ Q[X] | f(Z) ⊆ Z}. Building on
results by Cahen and Chabert [2] and Chapman and MacLane [5], the second author [7] showed
that every finite multiset of integers > 1 occurs as the set of lengths (of factorizations into
irreducibles) of some polynomial in Int(Z). This result was generalized to rings of integer-valued
polynomials on Dedekind domains with infinitely many maximal ideals of finite index by Nakato,
Rissner and the second author [9].

The analogous question for integer-valued polynomials on discrete valuation domains with
finite residue field is an open problem:
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Problem. [3, Problem 39] Analyze and describe non-unique factorization in Int(V ), where V is
a DVR with finite residue field.

Note that if V has an infinite residue field then Int(V ) = V [X], which has unique factorizations.
In the non-trivial case of finite residue fields not much is known yet. Nakato, Rissner and the
second author [8, 10] characterized when certain irreducible elements are absolutely irreducible in
Int(V ). The binomial polynomials in Int(Z) were shown to be absolutely irreducible by Rissner
and the third author [14].

Returning to sets of lengths in Int(D), the methods used so far [7, 9] rely heavily on the
existence of prime ideals of arbitrarily large index and, hence, do not apply to the case of
discrete valuation domains.

Using combinatorial linear algebra, we are able to approach this problem for discrete valuation
domains in certain fields, obtaining the following

Theorem. Let V be a discrete valuation domain with finite residue field. Suppose that the
quotient field K of V admits a valuation ring independent from V whose maximal ideal is
principal. Let k be a positive integer and 1 < n1 ≤ . . . ≤ nk integers.

Then there exists an integer-valued polynomial H ∈ Int(V ) which has precisely k essentially
different factorizations into irreducible elements of Int(V ) whose lengths are exactly n1, . . . , nk.

It is implicit in our proof that the monic irreducible polynomials of degree n lie dense (with
respect to the V -adic topology on K) in the set of all monic polynomials of degree n over a field
K as above. So this is true in particular for global fields, but fails for local field as we show in
Remark 5.6. From the above theorem, we immediately obtain the following three corollaries.

Corollary. Let V be a valuation ring of a global field. Let k be a positive integer and 1 < n1 ≤
. . . ≤ nk integers.

Then there exists an integer-valued polynomial H ∈ Int(V ) which has precisely k essentially
different factorizations into irreducible elements of Int(V ) whose lengths are exactly n1, . . . , nk.

Corollary. Let V be a discrete valuation domain with finite residue field such that the quotient
field of V is a purely transcendental extension of an arbitrary field. Let k be a positive integer
and 1 < n1 ≤ . . . ≤ nk integers.

Then there exists an integer-valued polynomial H ∈ Int(V ) which has precisely k essentially
different factorizations into irreducible elements of Int(V ) whose lengths are exactly n1, . . . , nk.

Corollary. Let V be a discrete valuation domain with finite residue field. Suppose that the
quotient field K of V is a finite extension of a field L that admits a valuation ring independent
from V ∩ L whose maximal ideal is principal or whose residue field is finite. Let k be a positive
integer and 1 < n1 ≤ . . . ≤ nk integers.

Then there exists an integer-valued polynomial H ∈ Int(V ) which has precisely k essentially
different factorizations into irreducible elements of Int(V ) whose lengths are exactly n1, . . . , nk.

Finally, in Remark 5.6, we point out that discretely valued henselian fields are not approachable
by our methods.

2. Preliminaries

Factorizations. We give an informal presentation of factorizations. The interested reader is
refered to the monograph by Geroldinger and Halter-Koch [11] for a systematic introduction.
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Let R be an integral domain and r ∈ R. We say that r is irreducible (in R) if it cannot be
written as the product of two nonunits of R. A factorization of r is a decomposition

r = a1 · · · an

into irreducible elements ai of R. In this case n is called the length of this factorization of r. Let
s be a further element of R. We say that r and s are associated if there exists a unit ε ∈ R such
that r = εs. We want to consider factorizations up to order and associates. In other words two
factorizations

r = a1 · · · an = u1 · · ·um
of r are essentially the same if n = m and, after renumbering if necessary, ui is associated to ai
for all i ∈ {1, . . . , n}. Otherwise, they are called essentially different.

Valuations. Let K be a field. A valuation v on K is a map

v : K× → G

where (G,+,≤) is a totally ordered Abelian group, subject to the following conditions for all
a, b ∈ K×:

(1) v(a · b) = v(a) + v(b) and
(2) v(a+ b) ≥ inf{v(a), v(b)}.

If G ∼= Z then v is called a discrete (rank one) valuation. The set {0} ∪ {x ∈ K× | v(x) ≥ 0} is a
subring of K and called the valuation ring of v. If v is a discrete (rank one) valuation on K, then
there exists a valuation w : K× → Z with the same valuation ring. We call w the normalized
valuation of this valuation ring.

We will use frequently using the following fact without further mention, which is to find in [1,
Chapter VI, § 3, Proposition 1]: If v is a valuation on K and a, b ∈ K are such that v(a) 6= v(b)
then v(a+ b) = inf{v(a), v(b)}.

For a general introduction to valuations, see [1].

Discrete valuation domains. An integral domain V with quotient field K is said to be
a discrete (rank one) valuation domain (DVR) if it satisfies one of the following equivalent
statements:

(1) V is the valuation ring of a discrete (rank one) valuation on K.
(2) V is a unique factorization domain with a unique prime element up to associates.
(3) V is a principal ideal domain with a unique non-zero prime ideal.
(4) V is a local Dedekind domain but not a field.

If V is a DVR with normalized valuation v then the prime elements of V (which are all
associated) are precisely the elements p ∈ V with v(p) = 1.

If M is the unique maximal ideal of V then V/M is called its residue field.

Fields. By a global field we mean a finite extension either of the field of rational numbers
Q or of a field of rational functions F(T ) in one variable over a finite field F. The first type is
refered to as algebraic number field and the second as algebraic function field. Note that every
valuation ring of a global field is a discrete (rank one) valuation domain.
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Integer-valued polynomials. Let R be an integral domain with quotient field K. The set
Int(R) = {f ∈ K[X] | f(R) ⊆ R}

is a subring of K[X] and called the ring of integer-valued polynomials on R. Let V be a valuation
domain with valuation v on its quotient field K. Every element f ∈ K[X] can be written in the
form f = g

d , where g ∈ V [X] and d ∈ V \ {0}. It is immediate that f ∈ Int(V ) if and only if
mina∈V v(f(a)) ≥ v(d).

For a detailed treatment of integer-valued polynomials we refer to the monograph by Cahen
and Chabert [4].

3. Glueing of polynomials

Let V be a discrete valuation domain with finite residue field. Let K be the quotient field of
V . The purpose of this section is to construct monic polynomials in V [X] of a given degree that
are irreducible over K and behave similarly as a given product of linear factors with respect to
the valuation of V . We can solve this problem in two cases, see Lemma 3.3 and Lemma 3.4. We
understand this as a sort of glueing process of linear factors into something indecomposable.

Remark 3.1. Let K be a field and W a valuation domain of K with corresponding valuation w
and maximal ideal M . The following are easily seen to be equivalent:

(a) M is principal and W is not a field.
(b) The value group of w has a minimal element > 0.
(c) M 6= M2.

Therefore we use these three properties interchangeably throughout the manuscript.

Proof. We only have to argue that (a) is equivalent to (c). Suppose thatM = M2 and let x ∈M ,
that is, w(x) > 0. Since x ∈M2, there exist x1, . . . , xn, y1, . . . , yn ∈M such that x =

∑n
i=1 xiyi.

Now,
w(x) ≥ min

i
w(xiyi)

and hence w(x) ≥ w(xi) + w(yi) for some i. Since w(xi),w(yi) > 0, it follows that w(x) cannot
be minimal > 0.

Conversely, suppose that the value group of w does not have a minimal element > 0. Let
x ∈ M and y ∈ M with w(x) > w(y) > 0. Pick z ∈ M with w(z) = w(x) − w(y) > 0. Then
w(x) = w(yz) and therefore there exists ε ∈W× such that x = (εy) · z ∈M2. �

Lemma 3.2. Let W be a local and integrally closed domain with quotient field K and let N be
the maximal ideal of W . Let F =

∑n
i=0 diX

i ∈W [X] with the following properties:
(i) dn /∈ N .
(ii) di ∈ N for all i ∈ {0, . . . , n− 1}.
(iii) d0 /∈ N2.

Then F is irreducible in K[X].

Proof. We first show that F is not a product of two non-constants in W [X]. Assume to the
contrary that F = ST where S, T ∈W [X] \W . Then

S · T = F = dnX
n,

where · denotes the reduction modulo N . Since W/N is a field, it follows that
S = bXs, T = cXt,
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where b · c = dn 6= 0 and s + t = n, s 6= n 6= t. So the constant terms of S and T lie in M ,
contradicting d0 /∈M2.

Since dn /∈ N , we can assume without loss of generality that F is monic. Now W is integrally
closed, whence F is also irreducible in K[X] by [1, Chapter 5, § 1.3, Proposition 11]. �

Lemma 3.3. Let V be a discrete valuation domain whose quotient field K admits a valuation
domain independent from V whose maximal ideal is principal. Let v : K× → Z be the normalized
valuation of V and R1, . . . , Rq be the residue classes of V . For each k ∈ {1, . . . , q} choose rk ∈ Rk
arbitrary. Let a1, . . . , an ∈ V with v(rk − ai) ∈ {0, 1} for all i, k and set f =

∏n
i=1(X − ai).

Then there exists F ∈ V [X] irreducible over K with deg(F ) = n such that min{v(f(a)) | a ∈
Rk} = min{v(F (a)) | a ∈ Rk} = v(F (rk)) for all k ∈ {1, . . . , q}.

Proof. Let b0, . . . , bn ∈ V such that f =
∑n
i=0 biX

i. Let w be a valuation on K independent from
v whose value group admits a minimal element 1 > 0, see Remark 3.1. Choose c0, . . . , cn−1 ∈ K
such that v(ci) = n + 1 and w(bi + ci) = 1 for all i ∈ {0, . . . , n − 1} which is possible by [12,
Theorem 22.9]. Let F = f +

∑n−1
i=0 ciX

i which is irreducible over K by applying Lemma 3.2 with
respect to w. Clearly, deg(F ) = n.

Let k ∈ {1, . . . , q}. Then v(f(rk)) = min{v(f(a)) | a ∈ Rk}. Also

v(F (rk)) = min{v(f(rk)), v(
n−1∑
i=0

cir
i
k)} = v(f(rk))

because v(ci) = n+ 1 and therefore v(f(rk)) ≤ n < v(
∑n−1
i=0 cir

i
k). If now a ∈ Rk then

v(F (a)) = v(f(a) +
n−1∑
i=0

cia
i)

≥ min{v(f(a)), v(
n−1∑
i=0

cia
i)}

≥ v(f(rk)) = v(F (rk)).
�

Lemma 3.4. Let V be a discrete valuation domain whose quotient field K admits a valuation
domain W independent from V whose residue field is finite. Let v : K× → Z be the normalized
valuation of V and R1, . . . , Rq be the residue classes of V . For each k ∈ {1, . . . , q} choose rk ∈ Rk
arbitrary. Let a1, . . . , an ∈ V with v(rk − ai) ∈ {0, 1} for all i, k and set f =

∏n
i=1(X − ai).

Then there exists F ∈ V [X] irreducible over K with deg(F ) = n such that min{v(f(a)) | a ∈
Rk} = min{v(F (a)) | a ∈ Rk} = v(F (rk)) for all k ∈ {1, . . . , q}.

Proof. Let b0, . . . , bn−1 ∈ V such that f = Xn +
∑n−1
i=0 biX

i. Let w be a valuation on K with
valuation ring W , P the maximal ideal of W and R = V ∩W . We construct a monic polynomial
F = Xn +

∑n−1
i=0 FiX

i ∈ R[X] that is irreducible in K[X] and satisfies v(bi − Fi) > n for
i ∈ {0, . . . , n− 1}. Afterwards, we show that this suffices for the assertion of the lemma.

It is well-known that there exist irreducible polynomials of every degree over a finite field.
In particular, we can choose g = Xn +

∑n−1
i=0 giX

i ∈ W [X] a monic polynomial of degree n
that is irreducible in (W/P )[X]. By [12, Theorem 22.9], there exist F0, . . . , Fn−1 ∈ K such that
v(bi−Fi) > n and w(gi−Fi) > 0. Let F = Xn+

∑n−1
i=0 FiX

i. Then F ∈ R[X] and F is irreducible
in (W/P )[X], because its reduction F modulo P is the same as the one of g.
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We first show that F is irreducible inW [X]. Let F = ST where S, T ∈W [X]. Then S ·T = F .
Since F is irreducible, it follows that either S or T is a unit in (W/P )[X]. Since F is monic,
it follows that either S or T is in fact a unit in W [X], whence F is irreducible in W [X]. W is
integrally closed and, therefore, F is also irreducible in K[X] by [1, Chapter 5, § 1.3, Proposition
11].

Now, for each k ∈ {1, . . . , q},

v(f(rk)− F (rk)) = v(
n−1∑
i=0

(bi − Fi)rik) > n ≥ v(f(rk)) ≥ min{v(f(rk)), v(F (rk))}.

It follows that v(f(rk)) = v(F (rk)). It remains to prove that min{v(F (a)) | a ∈ Rk} = v(F (rk)).
So let b ∈ Rk such that v(F (b)) = min{v(F (a)) | a ∈ Rk}. Then

v(f(b)− F (b)) = v(
n−1∑
i=0

(bi − Fi)bi) > n ≥ v(f(rk)) = v(F (rk)) ≥ v(F (b)),

so v(F (rk)) = v(f(rk)) ≤ v(f(b)) = v(F (b)). �

4. Combinatorial toolbox

Notation 4.1. Let n be a positive integer. We write [n] = {1, . . . , n}.

Notation 4.2. Let 2 ≤ k, 2 ≤ n1 ≤ . . . ≤ nk be integers, i, j ∈ {1, . . . , k} with i < j, S ⊆ [ni],
and T ⊆ [nj ]. We set
Hi,j(S, T ) = Hj,i(T, S) = [n1]× . . .× [ni−1]× S × [ni+1]× . . .× [nj−1]× T × [nj+1]× . . .× [nk].

For s ∈ [ni], we define Hi,j(s, T ) = Hi,j({s}, T ). Moreover, we write Hi,j(S, [nj ]) = Hi(S).

Note that theHi(s) are (k−1)-dimensional hyperplanes in the grid [n1]×. . .×[nk]. Analogously,
the Hi,j(s, t) are (k − 2)-dimensional hyperplanes.

Lemma 4.3. Let k > 2 and 1 < n1 ≤ . . . ≤ nk be integers. Let I ⊆ [n1] × . . . × [nk]. Assume
that for every i ∈ {1, . . . , k} and r ∈ [ni] there exists j ∈ {1, . . . , k} \ {i} and T ⊆ [nj ] such
that I ∩ Hi(r) = Hi,j(r, T ). In other words, every intersection of I with a (k − 1)-dimensional
hyperplane is the union of (k − 2)-dimensional parallel hyperplanes.

Then there exists ` ∈ {1, . . . , k} and S ⊆ [n`] such that I = H`(S). That is, I is the union of
(k − 1)-dimensional parallel hyperplanes.

Proof. If I = ∅ then the statement is trivial. Assume that I 6= ∅. Let s ∈ [n1] such that
H1(s) ∩ I 6= ∅. By the hypothesis of the lemma there exists j ∈ {2, . . . , k} and Tj ⊆ [nj ] such
that H1(s) ∩ I = H1,j(s, Tj).

Case 1. Tj = [nj ]. If we can prove for every m ∈ [n1] with H1(m) ∩ I 6= ∅ that H1(m) ⊆ I,
we are done by setting ` = 1 and S = {m ∈ [n1] | H1(m) ∩ I 6= ∅}. So let m ∈ [n1] with
H1(m) ∩ I 6= ∅ and (m,m2, . . . ,mk) ∈ H1(m) ∩ I. For i ∈ {2, . . . , k}, we obtain

H1,i(s,mi) ∩ I = Hi(mi) ∩H1(s) ∩ I = Hi(mi) ∩H1(s) = H1,i(s,mi),

where the second equality follows from Tj = [nj ]. Hence, Hi,1(mi, s) = H1,i(s,mi) ⊆ I for every
i ∈ {2, . . . , k}.

For fixed i ∈ {2, . . . , k}, by the hypothesis of the lemma, there exist ji ∈ {1, . . . , k} \ {i} and
Ti ⊆ [nji ] such that I ∩ Hi(mi) = Hi,ji(mi, Ti). Now Hi,1(mi, s) ⊆ I ∩ Hi(mi) = Hi,ji(mi, Ti),



IVPs ON VRs OF GLOBAL FIELDS WITH PRESCRIBED LENGTHS OF FACTORIZATIONS 7

and therefore ji = 1 and m ∈ Ti. So I ∩Hi(mi) = Hi,1(mi, Ti) ⊇ Hi,1(mi,m) = H1,i(m,mi) for
every i ∈ {2, . . . , k}.

Again, by the hypothesis of the lemma, there exists j ∈ {2, . . . , k} and L ⊆ [nj ] such that
H1(m)∩I = H1,j(m,L). Choose i ∈ {2, . . . , k}\{j}. ThenH1,i(m,mi) ⊆ H1(m)∩I = H1,j(m,L).
It follows that L = [nj ] and hence H1(m) ∩ I = H1(m).

Case 2. Tj 6= [nj ]. Let i ∈ {1, . . . , k} \ {1, j}. Choose x ∈ [ni] arbitrary. Then Hi(x) ∩ I 6= ∅.
By the hypothesis of the lemma, there exist j′ ∈ {1, . . . , k} \ {i} and L ⊆ [nj′ ] such that
Hi(x) ∩ I = Hi,j′(x, L). Clearly, H1(s) ∩Hi,j′(x, L) ⊆ I ∩H1(s) = H1,j(s, Tj). Since j /∈ {1, i}
and Tj 6= [nj ], it follows that j′ = j and L ⊆ Tj (for otherwise, H1(s) ∩Hi,j′(x, L) ⊆ H1,j(s, Tj)
would contain an element whose j-th coordinate is in [nj ] \ Tj). Hence Hi(x) ∩ I = Hi,j(x, Tj).

Since x ∈ [ni] was chosen arbitrary, we obtain

I =
⋃

x∈[ni]
(Hi(x) ∩ I) =

⋃
x∈[ni]

Hi,j(x, Tj) = Hj(Tj)

and we are done choosing ` = j and S = Tj . �

Notation 4.4. Let k > 1 and 1 < n1 ≤ . . . ≤ nk be integers. By Qn1×...×nk we denote the
set of all (n1 × . . . × nk)–tensors, that is, the k-dimensional analogues of matrices over Q. Let
M ∈ Qn1×...×nk . For i ∈ [n1]× . . .× [nk], we write Mi for the entry of M indexed by i.

For I ⊆ [n1]× . . .× [nk], let ZI = {M ∈ Qn1×...×nk |
∑
i∈IMi = 0}. Moreover,

Z :=
⋂

`∈{1,...k}
r∈[n`]

ZH`(r).

For instance, if k = 2 then Z is the set of all (n1×n2)–matrices with all row and column sums
equal to 0.

Since the elements of Z are defined by the property that sums over hyperplanes are 0, clearly,
sums over disjoint unions of hyperplanes are also 0. The next lemma shows that no other sum
of a subset of the entries of M ∈ Z is necessarily 0. We will use it to show the existence of a
tensor M ∈ Qn1×...×nk such that the sum over a subset of the entries of M is 0 if and only if the
corresponding index set is a disjoint union of hyperplanes.
Lemma 4.5. Let k > 1 and 1 < n1 ≤ . . . ≤ nk be integers. Let I ⊆ [n1]×. . .×[nk] be non-empty
such that I 6= H`(S) for all ` ∈ {1, . . . , k} and S ⊆ [n`].

Then Z \ ZI 6= ∅.
Proof. We do an induction on k. If k = 2, we deal with (n1× n2)–matrices and we have to show
that there exists a matrix M ∈ Qn1×n2 all whose row and column sums are 0 and such that∑
i∈IMi 6= 0.
Let I ′ = I \

⋃
H1(s)⊆I H1(s). Note that I ′ originates from I when removing all rows fully

contained in I. It suffices to show the assertion for I ′, so assume without loss of generality that
I = I ′. Now, note that there exists (i1, j1) ∈ I such that neither the i1-th row nor the j1-th
column is contained in I. Let i2 ∈ [n1] such that (i2, j1) /∈ I. In the same way, let j2 ∈ [n2] such
that (i1, j2) /∈ I. Define the matrix M ∈ Z via

Mi =


1 if i ∈ {(i1, j1), (i2, j2)},
−1 if i ∈ {(i1, j2), (i2, j1)},
0 otherwise.
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Then
∑
i∈IMi ∈ {1, 2}, hence M ∈ Z \ ZI .

Now, let k > 2. By Lemma 4.3, there exist i ∈ {1, . . . , k} and r ∈ [ni] such that J :=
I ∩ Hi(r) 6= Hi,j(r, T ) for every j ∈ {1, . . . , k} and T ⊆ [nj ]. By the induction hypothesis, we
find a (k − 1)-dimensional tensor N indexed by elements of Hi(r) such that

∑
d∈Hi,j(r,s)Nd = 0

and
∑
d∈J Nd 6= 0. We define

Md =
{
Nd if d ∈ Hi(r),
0 otherwise.

Then M ∈ Z \ ZI . �

We use the following fact from combinatorial linear algebra.

Fact 4.6. LetK be an infinite field and V a finite-dimensionalK-vector space. LetW,W1, . . . ,Wn

be linear subspaces of V such that W ⊆
⋃n
j=1Wj .

Then there exists j ∈ {1, . . . , n} such that W ⊆Wj .

Proof. This is a known fact of combinatorial linear algebra [6, Theorem 4]. �

Proposition 4.7. Let k be a positive integer and 1 < n1 ≤ . . . ≤ nk integers. Then there exists
M ∈ Z such that M ∈ ZI only if I is a disjoint union of hyperplanes, that is, I = H`(S) for
some ` ∈ {1, . . . , k} and S ⊆ [n`].

Proof. Note that ZI is a subspace of Qn1×...×nk for every I ⊆ [n1]× . . .× [nk]. Assume that the
statement of the proposition does not hold. Then there are finitely many non-empty I1, . . . , In ⊆
[n1]× . . .× [nk] such that for each j ∈ {1, . . . , n} it holds that Ij 6= H`(S) whenever ` ∈ {1, . . . , k}
and S ⊆ [n`] and Z ⊆

⋃n
j=1 ZIj . It follows by Fact 4.6 that Z ⊆ ZIj for some j. This is a

contradiction to Lemma 4.5. �

5. Sets of lengths of integer-valued polynomials over a DVR

Lemma 5.1. Let V be a discrete valuation domain with finite residue field of cardinality q. Let
K be the quotient field of V , v : K× → Z its normalized valuation and π ∈ V a prime element,
that is, v(π) = 1. By R1, . . . , Rq denote the residue classes of V modulo the maximal ideal.

Let F1, . . . , Fr, G1, . . . , Gs ∈ V [X] irreducible over K such that
(i) e := min{

∑r
i=1 v(Fi(a)) | a ∈ R1} = min{

∑s
j=1 v(Gj(a)) | a ∈ Rk} for all k ∈ {2, . . . , q},

(ii) min{v(Gj(a)) | a ∈ R1} = 0 for all j ∈ {1, . . . , s},
(iii) min{v(Fi(a)) | a ∈ Rk} = 0 for all i ∈ {1, . . . , r} and k ∈ {2, . . . , q}.

Define
H =

(
∏r
i=1 Fi)(

∏s
j=1Gj)

πe
.

Then H ∈ Int(V ). Furthermore, H is a product of two non-units in Int(V ) if and only if there
exist non-empty I $ {1, . . . , r} and J $ {1, . . . , s} such that min{

∑
i∈I v(Fi(a)) | a ∈ R1} =

min{
∑
j∈J v(Gj(a)) | a ∈ Rk} for all k ∈ {2, . . . , q}.

Proof. Clearly H is integer-valued over V . If there exist I and J as in the lemma, define
e′ = mina∈R1

∑
i∈I v(Fi(a)) = mina∈Rk

∑
j∈J v(Gj(a)) (for k ∈ {2, . . . , q}). Then clearly

H =
(
∏
i∈I Fi)(

∏
j∈J Gj)

πe′ ·
(
∏
i∈{1,...,r}\I Fi)(

∏
j∈{1,...,s}\J Gj)

πe−e′

is a decomposition into two non-units in Int(V ).
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Conversely, if H = H1 ·H2 is a decomposition of H where H1 and H2 are non-units of Int(V ),
then, by [9, Lemma 3.4], there exist non-empty I $ {1, . . . , r} and J $ {1, . . . , s} such that

H1 =
(
∏
i∈I Fi)(

∏
j∈J Gj)

πe′ and H2 =
(
∏
i∈{1,...,r}\I Fi)(

∏
j∈{1,...,s}\J Gj)

πe−e′

for some e′ ∈ {0, . . . , e}. Assume to the contrary that mina∈R1

∑
i∈I v(Fi(a)) 6= mina∈Rk

∑
j∈J v(Gj(a))

for some k ∈ {2, . . . , q}. Exchanging, if necessary, the roles of I and {1, . . . , r} \ I respectively
J and {1, . . . , s} \ J , we may assume without loss of generality that mina∈R1

∑
i∈I v(Fi(a)) >

mina∈Rk
∑
j∈J v(Gj(a)). Since H1 is an integer-valued polynomial on V , it follows that

min
a∈R1

∑
i∈I

v(Fi(a)) > min
a∈Rk

∑
j∈J

v(Gj(a)) ≥ e′.

Hence we get
min
a∈R1

∑
i∈{1,...,r}\I

v(Fi(a)) < min
a∈Rk

∑
j∈{1,...,s}\J

v(Gj(a)) ≤ e− e′,

which is a contradiction because H2 ∈ Int(V ). �

Lemma 5.2. Let V be a discrete valuation domain with finite residue field of cardinality q and
residue classes R1, . . . , Rq. Let K be the quotient field of V , v : K× → Z its normalized valuation
and π ∈ V a prime element, that is, v(π) = 1. Let F1, . . . , Fr, G1, . . . , Gs ∈ V [X] irreducible over
K and pairwise non-associated over K such that

(i) e := min{
∑r
i=1 v(Fi(a)) | a ∈ R1} = min{

∑s
j=1 v(Gj(a)) | a ∈ Rk} for all k ∈ {2, . . . , q},

(ii) min{v(Gj(a)) | a ∈ R1} = 0 for all j ∈ {1, . . . , s},
(iii) min{v(Fi(a)) | a ∈ Rk} = 0 for all i ∈ {1, . . . , r} and k ∈ {2, . . . , q}.

Define

H =
(
∏r
i=1 Fi)(

∏s
j=1Gj)

πe
.

Then there is a bijective correspondence of the pairs of partitions {1, . . . , r} = I1 ∪ . . . ∪ I` and
{1, . . . , s} = J1 ∪ . . . ∪ J` with the properties that

(1) eλ := min{
∑
i∈Iλ v(Fi(a)) | a ∈ R1} = min{

∑
j∈Jλ v(Gj(a)) | a ∈ Rk} for all k ∈

{2, . . . , q} and λ ∈ {1, . . . , `} and
(2) for all λ ∈ {1, . . . , `} and all non-empty I $ Iλ and J $ Jλ there is k ∈ {2, . . . , q} such

that min{
∑
i∈I v(Fi(a)) | a ∈ R1} 6= min{

∑
j∈J v(Gj(a)) | a ∈ Rk}

and of the essentially different factorizations of H into irreducible elements of Int(V ) via

(I1 ∪ . . . ∪ I`, J1 ∪ . . . ∪ J`) 7→
(
∏
i∈I1 Fi)(

∏
j∈J1 Gj)

πe1
· . . . ·

(
∏
i∈I` Fi)(

∏
j∈J` Gj)

πe`
.

Proof. This follows immediately from Lemma 5.1. �

Theorem 1. Let V be a discrete valuation domain with finite residue field. Suppose that
the quotient field K of V admits a valuation ring independent from V whose maximal ideal is
principal or whose residue field is finite. Let k be a positive integer and 1 < n1 ≤ . . . ≤ nk
integers.

Then there exists an integer-valued polynomial H ∈ Int(V ) which has precisely k essentially
different factorizations into irreducible elements of Int(V ) whose lengths are exactly n1, . . . , nk.
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Proof. If k = 1 then H = Xn1 has the desired property. So let k ≥ 2. By Lemma 5.2 it suffices to
construct polynomials Fi and Gj as in the hypothesis of this lemma such that there are exactly
k different partitions of the index sets and their cardinalities are exactly n1, . . . , nk.

We set r = s = n1 · · ·nk. By Proposition 4.7, there exists a tensor M ∈ Qn1×...×nk such that
M ∈ Z and M /∈ ZI for all non-empty I ⊆ [n1] × . . . × [nk] such that I 6= H`(S) whenever ` ∈
{1, . . . , k} and S ⊆ [n`] (see Notation 4.2 and 4.4). Multiplying M with a common denominator
of its entries, we may assume without loss of generality that all entries of M are in Z. Then we
can write M = MF −MG where MF ,MG are tensors of the same dimensions as M whose entries
are positive integers. Recall that (MF )i for i ∈ [n1]× . . .× [nk] denotes the i-th entry of MF .

Let R1, . . . , Rq be the residue classes of V and v : K× → Z its normalized valuation. Let
rm ∈ Rm arbitrary for each m ∈ {1, . . . , q}. Since the Rm are infinite, we can pick, for each
i ∈ [n1] × . . . × [nk], a set of (MF )i distinct elements ai,11 , . . . , ai,1(MF )i ∈ V with v(r1 − ai,1j ) = 1
for all j, and for each m ∈ {2, . . . , q} a set of (MG)i distinct elements ai,m1 , . . . , ai,m(MG)i ∈ V with
v(rm − ai,mj ) = 1 for all j, and such that ai1,m1

j1
= ai2,m2

j2
implies j1 = j2, i1 = i2 and m1 = m2.

For each i ∈ [n1]× . . .× [nk], we set

fi =
(MF )i∏
j=1

(X − ai,1j ),

gi =
q∏

m=2

(MG)i∏
j=1

(X − ai,mj ).

By Lemma 3.3 respectively Lemma 3.4, there exist, for each i ∈ [n1] × . . . × [nk], polynomials
Fi, Gi ∈ V [X] which are all pairwise non-associated and irreducible over K. Moreover, by the
choice of fi and gi, for all non-empty I ⊆ [n1]× . . .× [nk] the equality mina∈R1

∑
i∈I v(Fi(a)) =

mina∈Rm
∑
j∈J v(Gj(a)) holds for all m ∈ {2, . . . , q} if and only if I = Hr(S) for some r ∈

{1, . . . , k} and S ⊆ [nr].
So the only admissible (in the sense of Lemma 5.2) partitions of the index set [n1] × . . . ×

[nk], namely those that correspond to factorizations into irreducibles, are the ones of the form
Hr(1)∪ . . .∪Hr(nr) for r ∈ {1, . . . , k}. These are exactly k many of cardinalities n1, . . . , nk. �

Corollary 5.3. Let V be a valuation ring of a global field. Let k be a positive integer and
1 < n1 ≤ . . . ≤ nk integers.

Then there exists an integer-valued polynomial H ∈ Int(V ) which has precisely k essentially
different factorizations into irreducible elements of Int(V ) whose lengths are exactly n1, . . . , nk.
Proof. Note that a global field has infinitely many non-equivalent discrete valuations. �

Corollary 5.4. Let V be a discrete valuation domain with finite residue field such that the
quotient field of V is a purely transcendental extension of an arbitrary field. Let k be a positive
integer and 1 < n1 ≤ . . . ≤ nk integers.

Then there exists an integer-valued polynomial H ∈ Int(V ) which has precisely k essentially
different factorizations into irreducible elements of Int(V ) whose lengths are exactly n1, . . . , nk.
Proof. The quotient field K of V is also the quotient field of a polynomial ring in one variable
over some field and, therefore, K admits infinitely many discrete valuations. �

Corollary 5.5. Let V be a discrete valuation domain with finite residue field. Suppose that the
quotient field K of V is a finite extension of a field L that admits a valuation ring independent
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from V ∩ L whose maximal ideal is principal or whose residue field is finite. Let k be a positive
integer and 1 < n1 ≤ . . . ≤ nk integers.

Then there exists an integer-valued polynomial H ∈ Int(V ) which has precisely k essentially
different factorizations into irreducible elements of Int(V ) whose lengths are exactly n1, . . . , nk.

Proof. Let WL be a valuation domain of L independent from V ∩ L. Let W be a valuation
domain of K extending WL. Then W and V are independent. In each of the two cases of the
assumption, namely, that the maximal ideal of WL is principal respectively its residue field is
finite, the same property follows forW by [1, Chapter VI, § 8.3, Theorem 1] and Remark 3.1. �

Remark 5.6. Unfortunately, our construction (including Lemma 3.3 and Lemma 3.4) fails for
henselian valued fields, so, in particular, for local fields.

Let K be a field discretely valued by a henselian valuation v with valuation ring V . Suppose
further that V has a finite residue field. Let q, Rk, rk, ai and f =

∏n
i=1(X−ai) as in Lemma 3.3.

Moreover, let F ∈ K[X] with deg(F ) = n such that min{v(f(a)) | a ∈ Rk} = min{v(F (a)) | a ∈
Rk} = v(F (rk)) for all k ∈ {1, . . . , q}.

Denote by M the maximal ideal of V and let r1 ∈ M , that is, R1 = M . Note that in the
concrete application of Lemma 3.3 in Theorem 1 at least one of the ai is in the maximal ideal
of V and one is not. In particular, we can assume that v(F (r1)) > 0 and v(F (rk)) > 0 for some
k 6= 0. Based on this, we show that F can never be irreducible over K.

Let F0, . . . , Fn−1 ∈ K such that F = Xn +
∑n−1
j=0 FjX

j . Let L be a splitting field of F over K
and ci ∈ L such that F =

∏n
i=1(X − ci). Since L is a finite extension of K, there exists a unique

extension of v to L which we also denote by v. It is clear that

v(F0) = v(F (0)) ≥ v(F (r1)) > 0.

Note that there exists a ci such that v(ci) = 0, for otherwise v(F (rk)) = 0. After renumbering
if necessary, let v(c1) = . . . = v(cm) = 0 and v(ci) > 0 for i > m. Then c1 · · · cm is the unique
summand of Fn−m that has valuation 0, hence v(Fn−m) = 0. Therefore the Newton polygon of
F has at least two different slopes and thus F is not irreducible over K [13, p. 147].

Based on our results and the previous remark, it is natural to pose the following

Problem 5.7. Determine lengths of factorizations of elements f ∈ Int(V ) where V is the discrete
valuation ring of a henselian valued field.
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