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Abstract For an arbitrary finite non-empty set S of natural numbers greater 1, we
construct f ∈ Int(Z) = {g ∈ Q[x] | g(Z) ⊆ Z} such that S is the set of lengths of
f , i.e., the set of all n such that f has a factorization as a product of n irreducibles
in Int(Z). More generally, we can realize any finite non-empty multi-set of natural
numbers greater 1 as the multi-set of lengths of the essentially different factorizations
of f .

Mathematics Subject Classification (2000) Primary 13A05; Secondary 13B25 ·
13F20 · 20M13 · 11C08

1 Introduction

Non-unique factorization has long been studied in rings of integers of number fields,
see the monograph of Geroldinger and Halter-Koch [5]. More recently, non-unique
factorization in rings of polynomials has attracted attention, for instance in Zpn [x], cf.
[4], and in the ring of integer-valued polynomials Int(Z) = {g ∈ Q[x] | g(Z) ⊆ Z}
(and its generalizations) [1,3].

We show that every finite set of natural numbers greater 1 occurs as the set of
lengths of factorizations of an element of Int(Z) (Theorem 9 in Sect. 4).

Our proof is constructive, and allows multiplicities of lengths of factorizations to be
specified. For example, given the multiset {2,2,2,5,5}, we construct a polynomial that
has three different factorizations into 2 irreducibles and two different factorizations into
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342 S. Frisch

5 irreducibles, and no other factorizations. Perhaps a quick review of the vocabulary
of factorizations is in order:

Notation and Conventions R denotes a commutative ring with identity. An element
r ∈ R is called irreducible in R if r is a non-zero non-unit such that r = ab with
a, b ∈ R implies that a or b is a unit. A factorization of r in R is an expression
r = s1 . . . sn of r as a product of irreducible elements in R. The number n of irreducible
factors is called the length of the factorization. The set of lengths L(r) of r ∈ R is the
set of all natural numbers n such that r has a factorization of length n in R.

R is called atomic if every non-zero non-unit of R has a factorization in R.
If R is atomic, then for every non-zero non-unit r ∈ R the elasticity of r is defined

as

ρ(r) = sup
{m

n
| m, n ∈ L(r)

}

and the elasticity of R is ρ(R) = supr∈R′(ρ(r)), where R′ is the set of non-zero
non-units of R. An atomic domain R is called fully elastic if every rational number
greater than 1 occurs as ρ(r) for some non-zero non-unit r ∈ R.

Two elements r, s ∈ R are called associated in R if there exists a unit u ∈ R such
that r = us. Two factorizations of the same element r = r1 · . . . · rm = s1 · . . . · sn are
called essentially the same if m = n and, after re-indexing the si , r j is associated to
s j for 1 ≤ j ≤ m. Otherwise, the factorizations are called essentially different.

2 Review of factorization of integer-valued polynomials

In this section we recall some elementary properties of Int(Z) and the fixed divisor
d( f ), to be found in [1–3]. The reader familiar with integer-valued polynomials is
encouraged to skip to Sect. 3.

Definition For f ∈ Z[x],
(i) the content c( f ) is the ideal of Z generated by the coefficients of f ,

(ii) the fixed divisor d( f ) is the ideal of Z generated by the image f (Z).

By abuse of notation we will identify the principal ideals c( f ) and d( f ) with their
non-negative generators. Thus, for f = ∑n

k=0 ak xk ∈ Z[x],

c( f ) = gcd (ak | k = 0, . . . , n) and d( f ) = gcd ( f (c) | c ∈ Z).

A polynomial f ∈ Z[x] is called primitive if c( f ) = 1.

Recall that a primitive polynomial f ∈ Z[x] is irreducible in Z[x] if and only if it
is irreducible in Q[x]. Similarly, f ∈ Z[x] with d( f ) = 1 is irreducible in Z[x] if and
only if it is irreducible in Int(Z).

We denote p-adic valuation by vp. Almost everything that we need to know about
the fixed divisor follows immediately from the fact that

vp(d( f )) = min
c∈Z

(vp( f (c))).
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A construction of integer-valued polynomials 343

In particular, it is easy to deduce that for any f, g ∈ Z[x],

d( f )d(g)
∣∣ d( f g).

Unlike c( f ), which satisfies c( f )c(g) = c( f g), d( f ) is not multiplicative: d( f )d(g)

is in general a proper divisor of d( f g).

Remark 1 (i) Every non-zero polynomial f ∈ Q[x] can be written in a unique way
as

f (x) = ag(x)

b
with g ∈ Z[x], c(g) = 1, a, b ∈ N, gcd(a, b) = 1.

(ii) When expressed as in (i), f is in Int(Z) if and only if b divides d(g).
(iii) For non-constant f ∈ Int(Z) expressed as in (i) to be irreducible in Int(Z) it is

necessary that a = 1 and b = d(g).

Proof (i) and (ii) are easy. Ad (iii). Note that the only units in Int(Z) are ±1. By
(ii), b divides d(g). Let d(g) = bc. Then f factors as a · c · (g/bc), where (g/bc) is
non-constant and ac is a unit only if a = c = 1. ��

Remark 2 (i) Every non-zero polynomial f ∈ Q[x] can be written in a unique way
up to the sign of a and the signs and indexing of the gi as

f (x) = a

b

∏
i∈I

gi (x),

with gi primitive and irreducible in Z[x] for i ∈ I (a finite set) and a ∈ Z, b ∈ N

with gcd(a, b) = 1.
(ii) A non-constant polynomial f ∈ Int(Z) expressed as in (i) is irreducible in Int(Z)

if and only if a = ±1, b = d(
∏

i∈I gi ), and there do not exist ∅ 	= J � I and
b1, b2 ∈ N with b1b2 = b and b1 = d(

∏
i∈J gi ), b2 = d(

∏
i∈I\J gi ).

(iii) Int(Z) is atomic.
(iv) Every non-zero non-unit f ∈ Int(Z) has only finitely many factorizations into

irreducibles in Int(Z).

Proof Ad (ii). If f is irreducible, the conditions on f follow from Remark 1 (ii) and
(iii). Conversely, if the conditions hold, what chance does f have to be reducible? By
Remark 1 (ii), we cannot factor out a non-unit constant, because no proper multiple
of b divides d(

∏
i∈I gi ). Any non-constant irreducible factor would, by Remark 1

(iii), be of the kind (
∏

i∈J gi )/b1 with b1 = d(
∏

i∈J gi ), and its co-factor would be
(
∏

i∈I\J gi )/b2 with b1b2 = b and b2 a divisor of d(
∏

i∈I\J gi ). Also, b2 could not
be a proper divisor of d(

∏
i∈I\J gi ), because otherwise b1b2 = b would be a proper

divisor of
∏

i∈I gi . So, the existence of a non-constant irreducible factor would imply
the existence of J and b1, b2 of the kind we have excluded.

Ad (iii). With f (x) = ag(x)/b, g = ∏
i∈I gi as in (i), d(g) = cb for some c ∈ N,

and f (x) = acg(x)/d(g) with g(x)/d(g) ∈ Int(Z). We can factor ac into irreducibles
in Z, which are also irreducible in Int(Z). Either g(x)/d(g) is irreducible, or (ii) gives
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an expression as a product of two non-constant factors of smaller degree. By iteration
we arrive at a factorization of g(x)/d(g) into irreducibles.

Ad (iv). Let f ∈ Int(Z) = (ag(x)/b) with g = ∏
i∈I gi as in (i). Then all factor-

izations of f are of the form, for some c ∈ N such that bc divides d(g),

f = a1 . . . anc1 . . . cm

k∏
j=1

∏
i∈I j

gi

d j
,

where a = a1 . . . an and c = c1 . . . cm are factorizations into primes in Z, I =
I1 ∪ . . . ∪ Ik is a partition of I into non-empty sets, d1 . . . dk = bc, d j = d(

∏
i∈I j

gi ).
There are only finitely many such expressions. ��

Remark 3 (i) The binomial polynomials

(
x
n

)
= x(x − 1) . . . (x − n + 1)

n! for n ≥ 0

are a basis of Int(Z) as a free Z-module.
(ii) n! f ∈ Z[x] for every f ∈ Int(Z) of degree at most n.

(iii) Let f ∈ Z[x] primitive, deg f = n and p prime. Then

vp(d( f )) ≤
∑
k≥1

[
n

pk

]
= vp(n!).

In particular, if p divides d( f ) then p ≤ deg f .

Proof Ad (i). The binomial polynomials are in Int(Z) and they form a Q-basis of Q[x].
If a polynomial in Int(Z) is written as a Q-linear combination of binomial polynomials
then an easy induction shows that the coefficients must be integers. (ii) follows from
(i).

Ad (iii). Let g = f/d( f ). Then g ∈ Int(Z) and d( f )Z = (Z[x] :Z g). Since
n! ∈ (Z[x] :Z g) by (ii), d( f ) divides n! ��

3 Useful Lemmata

Lemma 4 Let p be a prime, I 	= ∅ a finite set and for i ∈ I , fi ∈ Z[x] primitive and
irreducible in Z[x] such that d(

∏
i∈I fi ) = p. Let

g(x) =
∏

i∈I fi

p
.

Then every factorization of g in Int(Z) is essentially the same as one of the following:

g(x) =
∏

j∈J f j

p
·

∏
i∈I\J

fi ,

where J ⊆ I is minimal such that d(
∏

i∈J f j ) = p.
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Proof Follows from Remark 1 (iii) and the fact that d( f )d(h) divides d( f h) for all
f, h ∈ Z[x]. ��

The following two easy lemmata are constructive, since the Euclidean algorithm
makes the Chinese Remainder Theorem in Z effective.

Lemma 5 For every prime p ∈ Z, we can construct a complete system of residues
mod p that does not contain a complete system of residues modulo any other prime.

Proof By the Chinese Remainder Theorem we solve, for each k = 1, . . . , p the system
of congruences sk = k mod p and sk = 1 mod q for every prime q < p.

Lemma 6 Given finitely many non-constant monic polynomials fi ∈ Z[x], i ∈ I , we
can construct monic irreducible polynomials Fi ∈ Z[x], pairwise non-associated in
Q[x], with deg Fi = deg fi , and with the following property:

Whenever we replace some of the fi by the corresponding Fi , setting gi = Fi for
i ∈ J (J an arbitrary subset of I ) and gi = fi for i ∈ I\J , then for all K ⊆ I ,

d

(∏
i∈K

gi

)
= d

(∏
i∈K

fi

)
.

Proof Let n = ∑
i∈I deg fi . Let p1, . . . , ps be all the primes with pi ≤ n, and set

αi = vpi (n!). Let q > n be a prime. For each i ∈ I , we find by the Chinese Remainder
Theorem the coefficients of a polynomial ϕi ∈ (

∏s
k=1 pαk

k )Z[x] of smaller degree than
fi , such that Fi = fi + ϕi satisfies Eisenstein’s irreducibility criterion with respect
to the prime q. Then, with respect to some linear ordering of I , if Fi happens to be
associated in Q[x] to any Fj of smaller index, we add a suitable non-zero integer
divisible by q2 ∏s

k=1 pαk
k to Fi , to make Fi non-associated in Q[x] to all Fj of smaller

index.
The statement about the fixed divisor follows, because for every c ∈ Z and every

prime pi that could conceivably divide the fixed divisor,

∏
i∈K

(gi (c)) ≡
∏
i∈K

( fi (c)) mod pαi
i ,

where pαi
i is the highest power of pi that can divide the fixed divisor of any monic

polynomial of degree at most n. ��

4 Constructing polynomials with prescribed sets of lengths

We precede the general construction by two illustrative examples of special cases,
corresponding to previous results by Cahen, Chabert, Chapman and McClain.

Example 7 For every n ≥ 0, we can construct H ∈ Int(Z) such that H has exactly
two essentially different factorizations in Int(Z), one of length 2 and one of length
n + 2.
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Proof Let p > n + 1, p prime. By Lemma 5 we construct a complete set a1, . . . , ap

of residues mod p in Z that does not contain a complete set of residues mod any prime
q < p. Let

f (x)=(x−a2)(x−a3) . . . (x−ap) and g(x)=(x − an+2)(x−an+3) . . . (x−ap).

By Lemma 6, we construct monic irreducible polynomials F, G ∈ Z[x], not associated
in Q[x], with deg F = deg f , deg G = deg g, such that any product of a selection of
polynomials from (x − a1), . . . , (x − an+1), f (x), g(x) has the same fixed divisor as
the corresponding product with f replaced by F and g by G.

Let

H(x) = F(x)(x − a1) . . . (x − an+1)G(x)

p
.

By Lemma 4, H factors into two irreducible polynomials in Int(Z)

H(x) = F(x) · (x − a1) . . . (x − an+1)G(x)

p

or into n + 2 irreducible polynomials in Int(Z)

H(x) = F(x)(x − a1)

p
· (x − a2)(x − a3) . . . (x − an+1)G(x).

��
Corollary (Cahen and Chabert [1]) ρ (Int(Z)) = ∞.

Example 8 For 1 ≤ m ≤ n, we can construct a polynomial H ∈ Int(Z) that has in
Int(Z) a factorization into m + 1 irreducibles and an essentially different factorization
into n + 1 irreducibles, and no other essentially different factorization.

Proof Let p > mn be prime, s = p − mn. By Lemma 5 we construct a complete
system of residues R mod p that does not contain a complete system of residues for
any prime q < p. We index R as follows:

R = {r(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {b1, . . . , bs}.
Let b(x) = ∏s

k=1(x − bk). For 1 ≤ i ≤ m let fi (x) = ∏n
k=1(x − r(i, k)) and for

1 ≤ j ≤ n let g j (x) = ∏m
k=1(x − r(k, j)).

By Lemma 6, we construct monic irreducible polynomials Fi , G j ∈ Z[x], pair-
wise non-associated in Q[x], such that the product of any selection of the polynomials
(x − b1), . . . , (x − bs), f1, . . . , fm, g1, . . . , gn has the same fixed divisor as the cor-
responding product in which fi has been replaced by Fi and g j by G j for 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Let

H(x) = 1

p
b(x)

m∏
i=1

Fi (x)

n∏
j=1

G j (x),
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then, by Lemma 4, H has a factorization into m + 1 irreducibles

H(x) = F1(x) · . . . · Fm(x) · b(x)G1(x) · . . . · Gn(x)

p

and an essentially different factorization into n + 1 irreducibles

H(x) = b(x)F1(x) · . . . · Fm(x)

p
· G1(x) · . . . · Gn(x)

and no other essentially different factorization. ��
Corollary (Chapman and McClain [3]) Int(Z) is fully elastic.

Theorem 9 Given natural numbers 1 ≤ m1 ≤ · · · ≤ mn, we can construct a polyno-
mial H ∈ Int(Z) that has exactly n essentially different factorizations into irreducibles
in Int(Z), the lengths of these factorizations being m1 + 1, . . . , mn + 1.

Proof Let N = (
∑n

i=1 mi )
2 −∑n

i=1 m2
i , and p > N prime, s = p− N . By Lemma 5,

we construct a complete system of residues R mod p that does not contain a complete
system of residues for any prime q < p. We partition R into disjoint sets R =
R0 ∪ {t1, . . . , ts} with |R0| = N . The elements of R0 are indexed as follows:

R0 = {r(k, h, i, j) | 1 ≤ k ≤ n, 1 ≤ h ≤ mk, 1 ≤ i ≤ n, 1 ≤ j ≤ mi ; i 	= k},

meaning we arrange the elements of R0 in an m × m matrix with m = m1 +· · ·+ mn ,
whose rows and columns are partitioned into n blocks of sizes m1, . . . , mn . Now
r(k, h, i, j) designates the entry in the h-th row of the k-th block of rows and the j-th
column of the i-th block of columns. Positions in the matrix whose row and column
are each in block i are left empty: there are no elements r(k, h, i, j) with i = k.

For 1 ≤ k ≤ n, 1 ≤ h ≤ mk , let Sk,h be the set of entries in the (k, h)-th row:

Sk,h = {r(k, h, i, j) | 1 ≤ i ≤ n, i 	= k, 1 ≤ j ≤ mi }.

For 1 ≤ i ≤ n, 1 ≤ j ≤ mi , let Ti, j be the set of elements in the (i, j)-th column:

Ti, j = {r(k, h, i, j) | 1 ≤ k ≤ n, k 	= i, 1 ≤ h ≤ mk}.

For 1 ≤ k ≤ n, 1 ≤ h ≤ mk , set

f (k)
h (x) =

∏
r∈Sk,h

(x − r) ·
∏

r∈Tk,h

(x − r).

Also, let b(x) = ∏s
i=1(x − ti ).

By Lemma 6, we construct monic irreducible polynomials F (k)
h , pairwise non-

associated in Q[x], with deg F (k)
h = deg f (k)

h , such that any product of a selection of
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polynomials from (x − t1), . . . , (x − ts) and f (k)
h for 1 ≤ k ≤ n, 1 ≤ h ≤ mk has the

same fixed divisor as the corresponding product in which the f (k)
h have been replaced

by the F (k)
h . Let

H(x) = 1

p
b(x)

n∏
k=1

mk∏
h=1

F (k)
h (x).

Then deg H = N + p; and for each i = 1, . . . , n, H has a factorization into mi +1
irreducible polynomials in Int(Z):

H(x) = F (i)
1 (x) · . . . · F (i)

mi
(x) · b(x)

∏
k 	=i

∏mk
h=1 F (k)

h (x)

p

These factorizations are essentially different, since the F (i)
j are pairwise non-associated

in Q[x] and hence in Int(Z).
By Lemma 4, H has no further essentially different factorizations. This is so because

a minimal subset with fixed divisor p of the polynomials (x − ti ) for 1 ≤ i ≤ s and
F (k)

h for 1 ≤ k ≤ n, 1 ≤ h ≤ mk must consist of all the linear factors (x − ti ) together

with a minimal selection of F (k)
h such that all r ∈ R0 occur as roots in the product of

the corresponding f (k)
h . For all linear factors (x − r) with r ∈ R0 to occur in a set of

polynomials f (k)
h , it must contain for all but one k all f (k)

h , h = 1, . . . mk . If, for i 	= k,

f (k)
h and f (i)

j are missing, then r(k, h, i, j) and r(i, j, k, h) do not occur among the

roots of the polynomials f (k)
h . A set consisting of all f (k)

h for n − 1 different values of
k, however, has the property that all linear factors (x − r) for r ∈ R0 occur. ��
Corollary Every finite subset of N\{1} occurs as the set of lengths of a polynomial
f ∈ Int(Z).

5 No transfer homomorphism to a block-monoid

For some monoids, results like the above Corollary have been shown by means of
transfer-homomorphisms to block monoids. For instance, by Kainrath [6], in the case
of a Krull monoid with infinite class group such that every divisor class contains a
prime divisor.

Int(Z), however, doesn’t admit this method: We will show a property of the multi-
plicative monoid of Int(Z)\{0} that excludes the existence of a transfer-homomorphism
to a block monoid.

Proposition 10 For every n ≥ 1 there exist irreducible elements H, G1, . . . , Gn+1
in Int(Z) such that x H(x) = G1(x) . . . Gn+1(x).

Proof Let p1 < p2 < · · · < pn be n distinct odd primes, P = {p1, p2, . . . , pn},
and Q the set of all primes q ≤ pn + n. By the Chinese remainder theorem construct
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a1, . . . , an with ai ≡ 0 mod pi and ai ≡ 1 mod q for all q ∈ Q with q 	= pi .
Similarly, construct b1, . . . bpn such that, firstly, for all p ∈ P , bk ≡ k mod p if k ≤ p
and bk ≡ 1 mod p if k > p and, secondly, bk ≡ 1 mod q for all q ∈ Q\P . So, for
each pi ∈ P , a complete set of residues mod pi is given by b1, . . . bpi , ai , while all
remaining a j and bk are congruent to 1 mod pi . Also, all a j and bk are congruent to
1 for all primes in Q\P .

Set f (x) = (x − b1) . . . (x − bpn ) and let F(x) be a monic irreducible polynomial
in Z[x] with deg F = deg f such that the fixed divisor of any product of a selection
of polynomials from f (x), (x − a1), . . . , (x − an) is the same as the fixed divisor of
the corresponding set of polynomials in which f has been replaced by F . Such an F
exists by Lemma 6. Let

H(x) = F(x)(x − a1) . . . (x − an)

p1 . . . pn
.

Then H(x) is irreducible in Int(Z), and

x H(x) = x F(x)

p1 . . . pn
· (x − a1) · . . . · (x − an),

where x F(x)/(p1 . . . pn) and, of course, (x − a1), . . ., (x − an), are irreducible in
Int(Z). ��
Remark 11 Thanks to Roger Wiegand for suggesting an easier proof of Proposition 10:
Using the well-known fact that the binomial polynomials

( x
m

)
are irreducible in

Int(Z) for m > 0, it suffices to consider

x

(
x − 1

m − 1

)
= m

(
x

m

)

with m chosen to have exactly n prime factors in Z

Remark 12 Thanks to Alfred Geroldinger for pointing this out: Proposition 10 implies
that there does not exist a transfer-homomorphism from the multiplicative monoid
(Int(Z)\{0}, ·) to a block-monoid. (For the definition of block-monoid and transfer-
homomorphism see [5, Def. 2.5.5 and Def. 3.2.1], respectively.)

This is so because, in a block-monoid, the length of factorizations of elements of
the form cd with c, d irreducible, c fixed, is bounded by a constant depending only
on c, cf. [5, Lemma 6.4.4]. More generally, applying [5, Lemma 3.2.2], one sees
that every monoid that admits a transfer-homomorphism to a block-monoid has this
property, in marked contrast to Proposition 10.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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