
1. Extension-Contraction and the Spectrum of a Polynomial Ring

For subsets A,B of a ring R, we define

AB = {a1b1 + . . .+ anbn | n ∈ N, ai ∈ A, bi ∈ B}.

For a subset S of a commutative ring R with 1, the ideal of R generated by

the set S is SR.

∗ ∗ ∗ Extension and Contraction of Ideals ∗ ∗ ∗

1.1 Definition. If R ⊆ S are commutative rings and 1S = 1R , we say S:R is a

ring extension.

1.2 Definition. Let S:R be a ring extension. Then every ideal I of R defines an

ideal of S by expansion: Ie is the ideal of S generated by I , that is, Ie = IS .

Every ideal J of S defines an ideal of R by contraction: Jc = J ∩R.

More generally, if f :R→ S is a ring-homomorphism, then every I ER defines

an ideal Ie of S : the ideal of S generated by f(I), that is, Ie = f(I)S. Every

ideal J of S defines an ideal of R via contraction: Jc = f−1(J) of R. When f is

understood, Ie is sometimes written as IS and Je as J ∩R by abuse of notation

even if f is not injective.

Contraction preserves the property of being a prime ideal (or a primary ideal);

extension, in general, does not.

Clearly, for ideals A,B of R and C,D of S , A ⊆ B⇒ Ae ⊆Be and C ⊆D⇒
Cc ⊆ Dc ; and Aec ⊇ A and Dce ⊆ D.

Therefore, for every ring homomorphism f :R→ S , extension and contraction

give a bijective correspondence between ideals of R of the form Jc = J ∩R (J an

ideal of S) and ideals of S of the form Ie = IS (I an ideal of R). In two noteable

cases, all ideals of S are of the form Ie :

• Let H be an ideal of R and π :R→R/H , π(r)=r+H , the canonical projection.

Then extension and contraction induce a bijection between all ideals of R/H

and the ideals of R containing H . In both directions of this bijection the

properties of being a prime ideal, a primary ideal, or a G-ideal are preserved.

Note that for a subset S of R/H π−1(S) =
⋃

r+H∈S r +H .

• Let S be a multiplicative subset of R, RS the ring of quotients with denomia-

tors in S and f :R→RS the canonical map f(r)= r/1 (if R has a unit element,

or f(r) = rs/s otherwise). Recall that f is injective whenever S contains no
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zero-divisors. Then extension and contraction induce a bijection between all

ideals of RS and those ideals of R that are disjoint from S . Most importantly,

if S = R ⊆ P , P a prime ideal, then the bijection is between all ideals of RP

and the ideals of R contained in P .

Recall that for I an ideal of R, the rings R[x]/I[x] and (R/I)[x] are canonically

isomorphic via a0+a1x+ . . .+anx
n+I[x] 7→ (a0+I)+(a1+I)x+ . . .+(an+I)x

n .

∗ ∗ ∗ Spectrum of a Polynomial Ring ∗ ∗ ∗

Let R be a polynomial ring and P a prime ideal of R. Then every prime ideal

Q of R[x] with Q ∩ R ⊇ P contains P [x] and is therefore of the form π−1(Q̄),

where π:R[x]→R[x]/P [x]=(R/P )[x] is the canonical projection and Q̄ is a prime

ideal of (R/P )[x]. Those Q among them with Q ∩R = P correspond to those Q̄

for which Q̄ ∩ (R/P ) = (0 + P ).

Let D be a domain with quotient field K . Then every prime ideal Q of D[x]

with Q ∩D = (0) is of the form Q̄ ∩D[x], where Q̄ is a prime ideal of K[x] (and

thus Q̄ = (f), where f is an irreducible polynomial of K[x].

To summarize: to determine for a given prime ideal P of R all prime ideals Q

of R[x] with Q ∩ R = P : consider the polynomial ring KP [x], where KP is the

quotient field of R/P , i.e. KP =(R/P \{0+P})−1R/P for each monic irreducible

f ∈ KP [x], consider all polynomials of R/P [x] that are divisible by f in KP [x],

i.e. all products fg with g ∈ KP [x], such that fg ∈ R/P [x]. Then the collection

of all polynomials of D[x] whose residue class (under the projection of coefficients

from R to R/P is of the form fg (for some g ∈ KP [x]) is a prime ideal of D[x]

and all prime ideals Q of D[x] with Q ∩R = P are of this form.
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2. Modules

2.1 Definition. Let R be a commutative ring. An Abelian group (A,+) together

with a “scalar” multiplication · :R × A → A by elements of R is called an R-

module, if the following conditions hold for all r, s ∈ R and a, b ∈ A:

(r + s)a = ra+ sa

(rs)a = r(sa)

r(a+ b) = ra+ rb

In addition, we will always assume that modules are unitary, which means

that multiplication by 1 ∈R is the identity map on A, i.e., for all a ∈A, 1Ra= a.

2.2 Definition. Given an R-module A, the annihilator of a subset B of A is

AnnR(B) = {r ∈ R | ∀b ∈ B rb = 0}.

Clearly, AnnR(B) is an ideal of R for any B . Of particular importance is the

annihilator of the whole module. If AnnR(A) = I for an R-module A then A can

be regarded as an R/I -module by defining (r + I)a := ra.

2.3 Definition. An R-module A is called faithful if AnnR(A) = (0).

2.4 Definition. A (possibly non-commutative) ring A is called an R-algebra, if

(A,+) is an R-module and the multiplication of the ring A interacts peacefully

with the scalar multiplication as follows: for all r ∈ R and a, b ∈ A

r(ab) = (ra)b = a(rb).

Examples of R-algebras include the polynomial ring R[x] and the ring Mn(R)

of n × n matrices with entries in R. More generally, every ring T of which R

is a subring is an R-algebra (by restriction of the ring-multiplication on T to

· :R× T → T ).

Because of rb=(r1A)b, an R-algebra A is faithful if and only if Ann(1A)= (0),

and therefore every faithful R-algebra A admits an embedding of R by r 7→ r1A . If

we call R̃ the copy of R thus embedded in A, then, again by rb=(r1A)b, the scalar

multiplication of the R-algebra A is just the restriction of the ring multiplication

of A to R̃ × A.

2.5 Corollary. Let R be a domain with quotient field K and u ∈ L algebraic

over K . Then u is integral over R iff the coefficients of the minimal polynomial

of u over K are integral over R.
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3. Cayley-Hamilton and McCoy Theorems

A little excursion into linear algebra.

For R a commutative ring, let Mn(R) be the R-algebra of n×n matrices with

entries in R. We denote the identity matrix by I .

3.1 Lemma. Let R be a commutative ring. For A = (aij) ∈Mn(R), define the

adjoint of A as adj(A) = B = (bij) ∈Mn(R) with bij = (−1)i+j det(Ai
j), where

Ai
j ∈Mn−1(R) results from A by removing the i-th column and the j -th row.

Then

AB = BA = (detA)I.

Proof. Routine verification. �

The adjoint of a matrix can be used to give a short proof of Cayley-Hamilton’s

theorem. It uses the natural R-algebra homomorphism between Mn(R[x]) and

Mn(R)[x], which maps the matrix whose (i, j)-th entry is
∑

k a
(i,j)
k xk ∈ R[x], to

the polynomial
∑

k Akx
k , where Ak ∈Mn(R) is the matrix whose (i, j)-th entry

is a
(i,j)
k .

If S is a non-commutative ring, such as Mn(R), and we want to substitute a

ring element s for the variable in f(x) =
∑

akx
k ∈ S[x], we must specify whether

substitution happens on the right or on the left of the coefficients, i.e., if f(s)

means
∑

aks
k (right substitution) or

∑

skak (left substitution).

In any case, it is important to remember that substitution (whether right or

left) is in general not a homomorphism: if f, g ∈ S[x] and s ∈ S , it is in general

not true that (f · g)(s) = f(s) · g(s) (unless s commutes with the coefficients of

f and g). One thing that does work similarly to polynomials over commutative

rings is the correspondence between zeros and linear factors:

3.2 Lemma. Let S be a (possibly non-commutative) ring and f =
∑

akx
k ∈S[x].

For s ∈ S define f(s) =
∑

aks
k . Then f(s) = 0 if and only if f(x) = g(x)(x− s)

for some g ∈ S[x].

Proof. If f(s)=0 then f(x)=f(x)−f(s)=∑

k akx
k−∑

k aks
k=

∑

k ak(x
k−sk)=

∑

k ak(
∑k−1

j=0 s
jxk−j−1)(x− s) = g(x)(x− s).

If, on the other hand, f(x) = g(x)(x− s) with g(x) =
∑n

k=0 bkx
k then f(x) =

∑n
k=0 bkx

k+1 −∑n
k=0 bksx

k =
∑n+1

k=0(bk−1 − bks)x
k and right substitution yields

f(s) = 0. �
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3.3 Theorem. (Cayley-Hamilton) Let C be a n × n matrix with entries in a

commutative ring R, and χ(x) = det(xI −C) its characteristic polynomial. Then

χ(C) = 0.

Proof. Let B ∈Mn(R[x]) be the adjoint of xI − C then

B · (xI − C) = χ(x)I.

Applying the R-algebra isomorphism Mn(R[x]) ≃Mn(R)[x], we get

B(x)(x− C) = χ(x),

where B(x) ∈ Mn(R)[x] is the polynomial corresponding to the matrix B ∈
Mn(R[x]). Now χ(x) has a factor x−C in Mn(R)[x], and therefore χ(C) = 0. �

With the argument we used to prove Cayley-Hamilton (3.3), one can actually

show a stronger result, characterizing the ideal of those polynomials in R[x], which

have a given matrix C ∈Mn(R) as a zero:

3.4 Definition. Let R be a commutative ring and C ∈Mn(R). The null-ideal of

C in R[x] is defined as

NR(C) = {g ∈ R[x] | g(C) = 0.

3.5 Theorem. (McCoy) Let C be a n×n matrix with entries in a commutative

ring R. For 1≤ k ≤ n let Jk(xI −C) be the ideal of R[x] generated by the k× k

minors of xI−C . Then the ideal of all polynomials f ∈R[x] with f(C)=0 is equal

to the ideal quotient (Jn(xI−C) :Jn−1(xI−C))= (χC(x)R[x] :R[x] Jn−1(xI−C)).

Proof. Since the generators of Jn−1(xI − C), the (n − 1) × (n − 1)-minors of

(xI − C), are (up to sign) the entries of adj(xI − C)),

g(x) ∈ (χ(x)R[x] :R[x] Jn−1(xI − C))

is equivalent to

g(x)adj(xI − C) ∈ χ(x)Mn(R[x]).

Multiplying by (xI − C), which, being monic, is certainly not a zero-divisor in

Mn(R)[x], we again get an equivalent statement:

g(x)χ(x)I ∈ χ(x)Mn(R[x])(xI − C).
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We may cancel the scalar χ(x) ∈ R[x] (a monic polynomial - not a zero-divisor in

R[x]) to arrive at the equivalent statement

g(x)I ∈Mn(R[x])(xI − C),

and apply the isomorphism between Mn(R[x]) and Mn(R)[x] to get

g(x) ∈Mn(R)[x](x− C),

which is (by 3.2) equivalent to C being a zero of g(x). �

3.6 Definition. Let R be a commutative ring and f ∈ R[x] monic of degree n,

f = a0 + a1x+ . . . an−1x
n−1 + xn . Define Cf ∈Mn(R), the companion matrix

of f , by Cf = (cij) with ci i+1 = 1 for 1≤ i≤ n−1 and cnj =−aj−1 for 1≤ j ≤ n,

all other entries being zero:

Cf =













0 1 0 . . . 0
0 0 1 . . . 0

. . .

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1













3.7 Exercise. Show that the characteristic polynomial of Cf is f ; then use McCoy’s

theorem to show that the null ideal of Cf is principal and generated by f :

NR(Cf ) = f(x)R[x]

From Cayley-Hamilton theorem for matrices it is possible to derive a version

of Cayley-Hamilton theorem for linear operators, by associating matrices to linear

operators:

Suppose M is an R-module generated by m1, . . . , mn . Then every b ∈ M is

representable as b = b1m1 + . . .+ bnmn with (in general non-unique) b1, . . . , bn in

R. Let ϕ∈EndR(M). We say that a matrix C ∈Mn(R) represents ϕ with respect

to the system of generators m1, . . . , mn , if for every b ∈M , b= b1m1 + . . .+ bnmn

implies ϕ(b) = b′1m1 + . . .+ b
′
nmn with C[b1, . . . , bn] = [b′1, . . . , b

′
n]. (We use square

brackets to denote column vectors: [b1, . . . , bn] means the transpose of (b1, . . . , bn).

It is easy to see that C represents ϕ if and only if the k-th column of C is a

coordinate vector of ϕ(mk), i.e., if ϕ(mk) = c1km1 + c2km2 + . . .+ cnkmn .

If the generators m1, . . . , mn are not R-linearly independent, then the matrix

associated to a linear operator ϕ ∈ EndR(M) is non-unique, and not every matrix
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in Mn(R) represents a linear operator with respect to m1, . . . , mn . If C represents

ϕ and D represents ψ , however, then C + D and CD represent ϕ + ψ and

ϕ ◦ ψ , respectively, and, for r ∈ R, rC represents rϕ, so the set E ⊆ Mn(R)

of matrices representing R-endomorphisms of M with respect to a fixed set of

generators m1, . . . , mn is a R-subalgebra of Mn(R), and there is a surjective

R-algebra homomorphism π:E → EndR(M), mapping every matrix in E to the

endomorphism it represents. In particular, for every matrix C representing some

ϕ∈EndR(M), restriction of π to R[C] gives a surjective R-algebra homomorphism

π:R[C]→ R[ϕ], mapping f(C) ∈ R[C] to f(ϕ) ∈ R[ϕ] for every f ∈ R[x].

3.8 Lemma. Let M be an R-module generated by n elements and ϕ∈EndR(M).

If C ∈Mn(R) is a matrix associated to ϕ (with respect to a system of generators

m1, . . . , mn ∈M ) and χ(x) the characteristic polynomial of C then χ(ϕ) = 0.

Proof. By Cayley-Hamilton (3.3), χ(C) = 0, where χ = det(xI − C) is the

characteristic polynomial of C . Applying the R-algebra homomorphism π:R[C]→
R[ϕ] mentioned above, we see that 0 = π(χ(C)) = χ(ϕ). �

3.9 Corollary. Let M be an R-module generated by n elements and ϕ ∈
EndR(M), such that ϕ(M) ⊆ JM for some ideal J ER. Then ϕ is a zero of a

monic polynomial in R[x] of degree n, f(x)= xn+an−1x
n−1+ . . .+a1x+a0 with

ak ∈ Jn−k for 0 ≤ k < n.

Proof. If m1, . . . , mn generate M as a R-module and ϕ(M) ⊆ JM then there

exist cij ∈ J with ϕ(mk)= c1km1+c2km2+ . . .+cnkmn . Now χ(x)= det(xI−C),
the characteristic polynomial of C = (cij) is a monic polynomial of degree n with

χ(ϕ) = 0 and the property that the coefficient of xk is in Jn−k . �

3.10 Corollary. Nakayama’s Lemma. Let M be a finitely generated R-module.

(i) If, for some ideal I of R, IM =M , then there exists r ∈ R with r ≡ 1 mod I

and rM = 0.

(ii) If, for some ideal I contained in the radical of R, IM =M then M = 0.

Proof. Set ϕ = idM in 3.9 and set r = 1 + cn−1 + . . . + a0 . Then ridM is the

0-homomorphism, i.e., rM = 0. For I contained in the Jacobson radical (the

intersection of all maximal ideals of R), it follows that r is a unit of R, and

multiplication by r−1 gives M = 0. �

7



4. Integral elements

4.1 Definition. Let R be a commutative ring, T an R-algebra and u ∈ T . Then u
is called integral over R if and only if there exists a monic polynomial f ∈ R[x]

with f(u) = 0.

4.2 Definition. A ring extension R ⊆ T is called integral if every element of T is

integral over R.

4.3 Theorem. Let R be a commutative ring, T an R-algebra and u ∈ T . Then
the following are equivalent:

(1) u is integral over R.

(2) R[u] is finitely generated as an R-module.

(3) R[u] ⊆ A ⊆ T for some ring A that is finitely generated as an R-module.

(4) There exists a faithful R[u]-module that is finitely generated as an R

module.

(5) R[u] is integral over R.

Proof. (1 ⇒ 2) R[u] is generated as an R-module by the powers of u. Since

u is integral over R, there exists an n ∈ N and r0, . . . , rn−1 ∈ R such that

un = rn−1u
n−1 + . . .+ r1u+ r0 , and by induction, every power of u is expressible

as an R-linear combination of 1, u, . . . , un−1 .

(2 ⇒ 3) Take A = R[u].

(3 ⇒ 4) Take A as the faithful R[u] module.

(4 ⇒ 5) Let M be a faithful R[u]-module, generated by m1, . . . , mn as an R-

module, and let w ∈ R[u]. Then ϕw(m) = wm (scalar multiplication by w) is an

R-module endomorphism of M , ϕw ∈ EndR(M). Let C = (cij) in Mn(R) be a

matrix with with ϕw(mk) = c1km1 + c2km2 + . . . + cnkmn . Then C represents

ϕw ∈ EndR(M) with respect to the system of generators m1, . . . , mn .

By Cayley-Hamilton (3.8), χ(ϕw) = 0, where χ(x) = det(xIn −C) is the char-

acteristic polynomial of C . 0 = χ(ϕw) = ϕχ(w) , means that scalar multiplication

by χ(w) is the 0-mapping on M , in other words, χ(w) ∈ AnnR[u](M). Since M

is a faithful R[u] module, χ(w) = 0 follows. �

4.4 Definition. Let R be a commutative ring, I an ideal of R, T an R-algebra

and u ∈ T . Then u is called integral over I if and only if there exists a monic

polynomial f ∈ R[x] whose coefficients (apart from the leading coefficient) are all

in I with f(u) = 0.
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4.5 Theorem. Let R be a commutative ring, I an ideal of R, T an R-algebra

and u ∈ T . Then the following are equivalent:

(1) u is integral over I .

(2) R[u] is finitely generated as an R-module and u ∈
√

IR[u] .

(3) R[u] ⊆ A ⊆ T for some ring A that is finitely generated as an R-module

and u ∈
√
IA .

(4) There exists a faithful R[u]-module M that is finitely generated as an R

module and for some k ∈ N, ukM ⊆ IM .

Proof. (1 ⇒ 2) There exists an n ∈ N and r0, . . . , rn−1 ∈ I such that un =

rn−1u
n−1 + . . . + r1u + r0 . Therefore u ∈

√

IR[u] and R[u] is generated as an

R-module by 1, u, . . . , un−1 .

(2 ⇒ 3) Take A = R[u].

(3 ⇒ 4) Take A as the faithful R[u] module.

(4 ⇒ 1) Let M be a faithful R[u]-module, generated by m1, . . . , mn as an R-

module. Let w=uk such that wM⊆IM . Then ϕw(m)=wm (scalar multiplication

by w) is an R-module endomorphism of M . Let C = (cij) in Mn(R) be a matrix

with with ϕw(mk) = c1km1 + c2km2 + . . .+ cnkmn and cij ∈ I for all i, j . Then C

represents ϕw ∈ EndR(M) with respect to the system of generators m1, . . . , mn .

By Cayley-Hamilton (3.8), χ(ϕw) = 0, where χ(x) = det(xIn −C) is the char-

acteristic polynomial of C , whose coefficients (apart from the leading coefficient)

are all in I . 0 = χ(ϕw) = ϕχ(w) , means that scalar multiplication by χ(w) is the

0-mapping on M , in other words, χ(w) ∈AnnR[u](M). Since M is a faithful R[u]

module, χ(w) = 0 follows. As w = uk we have also found a monic polynomial

satisfied by u whose coefficients (except for the leading coefficient) are in I . �

If R ⊆ T are commutative rings and T is finitely generated as an R-module,

then T is also finitely generated over R as a ring, but the converse does not hold

in general, viz. the polynomial ring R[x]. Integrality provides the answer to the

question when the converse does hold. Note the analogy to field extensions, where

finitely generated by algebraic elements equals finite-dimensional.

4.6 Proposition. Let R be a commutative ring and T a commutative R-algebra.

Then the following are equivalent:

(1) T is finitely generated as an R-module.

(2) T is finitely generated over R as a ring and integral over R.

(3) T is finitely generated over R as a ring, by integral elements over R.

Proof. (1 ⇒ 2) by 4.3. (2 ⇒ 3) holds a fortiori. To see (3 ⇒ 1), assume T is
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generated as a ring over R by t1, . . . , tm . Then T is generated as an R-module

by monomials tk1

1 t
k2

2 . . . tkm
m . If each ti is integral over R then for each i there

exists an exponent ni such that every power of ti is expressible as an R-linear

combination of 1, ti, . . . , t
ni
i , and therefore T is generated as an R-module by

monomials tk1

1 t
k2

2 . . . tkm
m with 0 ≤ ki ≤ ni . �

4.7 Corollary. Let R be a commutative ring, T an R-algebra and a, b ∈ T

with ab = ba. If both R[a] and R[b] are finitely generated as R-modules then so

is R[a, b]. In particular, if a and b are commuting integral elements over R, then

a− b and ab are integral over R, too.

4.8 Corollary. Let R ⊆ T be commutative rings. Then the set of all elements of

T integral over R is a ring.

Commutativity is essential here. If the integral elements a and b do not

commute, neither their sum nor their product needs to be integral over R.

4.9 Definition. Let R ⊆ T be commutative rings. The ring

R′ = {t ∈ T | t is integral over R}

is called the integral closure of R in T . R is called integrally closed in T

if R′ = R. “The” integral closure of a domain R is the integral closure in its

quotient field. A domain R is called integrally closed if it is integrally closed in

its quotient field.

4.10 Proposition. Let R be a commutative ring, R⊆S an integral ring extension

and u integral over S . Then u is integral over R.

Proof. Suppose un + an−1u
n−1 + . . . + a0 = 0 with a0, . . . , an−1 ∈ S . Then

R[a0, . . . , an−1] is finitely generated as a ring by integral elements over R, and

therefore finitely generated as an R-module by 4.6. Let g1, . . . , gm be generators

of R[a0, . . . , an−1] as an R-module. Then R[a0, . . . , an−1, u] is generated as an

R-module by the elements giu
k for 1 ≤ i ≤m and 1 ≤ k ≤ n− 1. �

4.11 Corollary. (Transitivity of integral extensions) Let R ⊆ S ⊆ T be commu-

tative rings. If T is integral over S and S is integral over R then T is integral

over R.

4.12 Corollary. (Integral closure is integrally closed) Let R⊆ T be commutative

rings and R′ the integral closure of R in T . Then R′ is integrally closed in T .
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4.13 Theorem. Let D be a domain with quotient field K . D is integrally closed

if and only if, whenever f monic in D[x] factors as f(x) = g(x)h(x) for some g, h

monic in K[x] it follows that g, h ∈ D[x].

Proof. Suppose D integrally closed in K . Let f(x) = g(x)h(x) in K[x] with

f ∈D[x] monic. Let F be the splitting field of f over K . By unique factorization

in F [x], g(x) also splits over F . The roots of g are roots of f and therefore

integral over D. The coeffcients of g are elementary symmetric polynomials in the

roots and therefore in the integral closure of D in F . Since the coefficients of g

are in K and integral over D, they are in D.

Conversely, suppose the criterion holds and let u in K integral over D. Then

there exists a monic polynomial f ∈D[x] such that, in K[x], f(x) = g(x)(x− u).

By assumption, u ∈D follows. �

4.14 Corollary. Let D be an integrally closed domain with quotient field K and

F :K a field extension. Then u ∈ F is integral over D if and only it is algebraic

over K and its minimal polynomial over K is in D[x].

Proof. If u is a root of the monic polynomial f ∈D[x] and g ∈K[x] the minimal

polynomial of u over K , then g is a monic factor in K[x] of f and, therefore, in

D[x] by 4.13. �

4.15 Corollary. Let R be a domain with quotient field K and u ∈ L algebraic

over K . Then u is integral over R iff the coefficients of the minimal polynomial

of u over K are integral over R.

Do not confuse the above criterion 4.13 for integral closure with the following

easy fact:

4.16 Exercise. Let R ⊆ S be commutative rings and f ∈ R[x]. If f factors in

S[x] as f(x) = g(x)h(x) with g monic in R[x], then h, too, is in R[x].

4.17 Theorem. Let D be a domain with quotient field K . D is integrally closed

if and only if the minimal polynomial (in K[x]) of every square matrix with entries

in D is in D[x].

Proof. If D is integrally closed, the minimal polynomial of every matrix over D is

in D[x] by 4.13, since it is a monic factor in K[x] of the characteristic polynomial,

which is monic in D[x].

Conversely, if every minimal polynomial of a matrix over D is in D[x] then

every element of the integral closure D′ of D in K is actually in D, because it

11



occurs as a coefficient of a minimal polynomial of a matrix over D, by the following

Theorem. �

4.18 Theorem. Let D be a domain and D′ its integral closure. Then every

element of D′ occurs as a coefficient of a minimal polynomial of a matrix with

entries in D.

Proof. Let K be the quotient field of D and u ∈ K integral over D. We use the

expression “second-highest coefficient” to designate the coefficient of xn−1 in a

polynomial of degree n > 0.

Let f1(x) be a monic polynomial in D[x] with f1(u) = 0, deg f1 ≥ 3 and

second-highest coefficient zero. (Given any monic f ∈D[x] with f(u) = 0, we can

set f1(x) = f(x)(x2 − cx), where c is the second-highest coefficient of f .)

We write u as a fraction u= a/b with a, b∈D and set f2(x)= f1(x)+(bx−a).
Then f2(x) is another monic polynomial in D[x] with deg f2 ≥ 3, second-highest

coefficient zero and f2(u) = 0.

In K[x], f1(x)=g(x)(x−u) for some monic polynomial g∈K[x] with deg g≥2,

and f2(x) = (g(x) + b)(x − u). Note that the second-highest coefficient in both

g(x) and g(x) + b is u.

Now let Ci be the companion matrix of fi for i=1, 2 and C the block-diagonal

matrix with C1 and C2 on the main diagonal. Then the minimal polynomial h(x)

of C is the least common multiple of f1 and f2 in K[x]. Since g(x) and g(x) + b

are relatively prime, the minimal polynomial of C is

h(x) = g(x)
(

g(x) + b
) (

x− u
)

.

We have arranged things so that the three monic factors g(x), g(x)+b and (x−
u) of h(x) have second-highest coefficients u, u, and −u, respectively. Therefore

the second-highest coefficient of h(x) is u. �

4.19 Lemma. Let K ⊆ F be an algebraic extension of fields and R ⊆ K a

domain integrally closed in K . Let P be a prime ideal of R. u ∈ F is integral

over P if all coefficients of its minimal polynomial over K (apart from the leading

coefficient) are in P .

Proof. Let g ∈ R[x] with g(u) = 0 and all coefficients of g (except the leading

coefficient) in P , and f ∈ K[x] the minimal polynomial of u over K . Then f

divides g in K[x]. Let u1, . . . , un be the roots of f in its splitting field K̄ over

F , then all ui are also roots of g and therefore integral over P . Let R′ be the

12



integral closure of R in K̄ . The roots of f are in
√
PR′ . The coefficients of f

are, as elementary symmetric polynomials in the ui , in the subring generated by

the ui in K̄ , which is contained in
√
PR′ . As they are also in K , the coefficients

of f are in K ∩
√
PR′ =

√
P = P . �

4.20 Lemma. Let R⊆ T be commutative rings and u ∈ T an invertible element.

Then u−1 is integral over R if and only if u−1 ∈ R[u].

Proof. An equation showing u−1 to be integral over R, such as

(u−1)n = an−1(u
−1)n−1 + . . .+ a1(u

−1) + a0,

can be multiplied by un−1 to show u−1 to be in R[u]:

u−1 = an−1 + . . .+ a1u
n−2 + a0u

n−1.

Conversely, an equation showing u−1 ∈ R[u], can be multiplied by an appropriate

power of u−1 to show u−1 integral over R. �

4.21 Proposition. Let R ⊆ L be an integral extension of domains. Then R is a

field if and only if L is a field.

Proof. If R is a field then L is an algebraic extension of a field and therefore a

field. If L is a field and u is a non-zero element of R then u has an inverse u−1

in L, which by the previous lemma is in R[u] = R. Therefore R is a field. �

4.22 Definition. Ler R ⊆ T be commutative rings. We introduce names for a few

properties that the ring extension R ⊆ T may or may not satisfy:

Lying over. For every prime ideal P ER there exists a prime ideal P̃ E T

with P̃ ∩R = P .

Going up. If P ⊆ Q are prime ideals of R and P̃ a prime ideal of T with

P̃ ∩R= P then there exists a prime ideal Q̃ of T with P̃ ⊆ Q̃ and Q̃∩R=Q.

Going down. If P ⊆Q are prime ideals of R and Q̃ a prime ideal of T with

Q̃∩R=Q then there exists a prime ideal P̃ of T with P̃ ⊆ Q̃ and P̃ ∩R= P .

Incomparability. For any two prime ideals P̃ and Q̃ of T with P̃ ∩R= Q̃∩R
neither P̃ ⊆ Q̃ nor Q̃ ⊆ P̃ holds.

Let R ⊆ T be commutative rings, P a prime ideal of R and S = R \ P . If

Q is an ideal of T , then Q ∩ R ⊆ P if and only if Q ∩ S = ∅. Since S is a

multiplicative subset of T not containing (0), we know there exist ideals of T

not intersecting S , and among them ideals maximal with respect to this property,
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which are necessarily prime. The question is now whether an ideal maximal among

those not intersecting S actually intersects R in P and vice versa. It turns out

that the properties “incomparability” and “going up” can be characterized in this

way.

4.23 Proposition. Let R ⊆ T be commutative rings. Then the following are

equivalent:

(1) R ⊆ T satisfies “going up”.

(2) For every prime ideal P of R, if Q is an ideal of T maximal with respect

to the property Q ∩ (R \ P ) = ∅ then Q ∩R = P .

Since ideals maximal with respect to avoiding a multiplicative set S with 0 /∈S
are guaranteed to exist and are prime, we get:

4.24 Corollary. “Going up” implies “lying over”.

4.25 Proposition. Let R ⊆ T be commutative rings. Then the following are

equivalent:

(1) R ⊆ T satisfies “incomparability”.

(2) For every prime ideal P of R, if Q is a prime ideal of T with Q ∩ R = P

then Q is maximal with respect to the property Q ∩ (R \ P ) = ∅.

4.26 Theorem. Let R⊆ T be an integral extension of commutative rings. Then

“incomparability” and “going up” (and therefore “lying over”) hold.

Proof. To show “going up”, we assume P is a prime ideal of R and P̃ an ideal of

T maximal with respect to the property P̃ ∩(R\P )= ∅; we must show P̃ ∩R=P .

Suppose otherwise and choose u ∈ P \ P̃ . Then, by maximality of P̃ , there exists

an s ∈ (R \ P ) ∩ (P̃ + Tu), s = q + tu with q ∈ P̃ and t ∈ T . t is integral over R,

i.e.,

tn + cn−1t
n−1 + . . .+ c0 = 0

with coeffiecients ci ∈ R. Multiplying by un , we get

(tu)n + cn−1u(tu)
n−1 + . . .+ unc0 = 0.

Since tu+ q = s, tu ≡ s mod P̃ , and therefore

sn + cn−1us
n−1 + . . .+ unc0 ≡ 0 (mod P̃ ).

The left side of this congruence is in R, so it is actually in P̃ ∩R⊆P . Since u∈P
we get sn ∈ P and therefore s ∈ P , a contradiction.

14



To show “incomparability”, we assume P̃ ∩ R = P and must show that P̃

is maximal with respect to not intersecting S = R \ P . Suppose there exists

Q̃ with P̃ ⊂ Q̃ and Q̃ ∩ S = ∅. Choose u ∈ Q̃ \ P̃ . u is integral over R.

So in particular there exists a monic polynomial f in R[x] with f(u) ∈ P̃ .

Let f(x) = xn +
∑n−1

i=0 aix
i be of minimal degree with this property. Clearly,

deg f = n≥ 1. Since un + an−1u
n−1 + . . .+ a0 ∈ P̃ ⊆ Q̃ and u ∈ Q̃, it follows that

a0 ∈ Q̃ ∩R = P . Now u(un−1 + an−1u
n−2 + . . .+ a1) ∈ P̃ , but no factor is in P̃ ,

a contradiction. �

4.27 Theorem. If R⊆ T is an integral extension of domains and R is integrally

closed then “going down” holds.

Proof. Suppose P0 ⊆ P1 are prime ideals of R and Q1 a prime ideal of T with

Q1∩R=P1 . Let S0 =R\P0 , S1 = T \Q1 , and S=S0S1 = {rs | r ∈S0, s∈S1}. S
is a multiplicative set containing S0 and S1 . We will show P0T ∩ S = ∅. Once we

have shown this we are done, because then there exists an ideal Q0 of T maximal

with respect to P0T ⊆Q0 and Q0∩S = ∅, which is prime, and does what we want.

So, suppose r ∈ S0 and s∈S1 with rs∈P0T . Let f = xn+an−1x
n−1+ . . .+a0

be the minimal polynomial of rs over the quotient field K of R. As rs is integral

over P0 , the coefficients a0, . . . , an−1 are in P0 . Let

g(x) = xn +
an−1

r
xn−1 +

an−2

r2
xn−2 + . . .+

a0
rn

then g(s)= 0 and g must be the minimal polynomial of s over K (or else we could

construct a polynomial in K[x] of degree less than n satisfied by rs). Therefore

bk = ak/r
n−k ∈ R for 0 ≤ k < n. Now rn−kbk = ak ∈ P0 and r /∈ P0 implies

bk ∈ P0 for 0 ≤ k < n and s is therefore integral over P0 . So s ∈
√
P0T ⊆ Q1 , a

contradiction. �

The length of a chain of ideals I0 ⊇ I1 ⊇ I2 ⊇ . . . is defined as the number of

proper inclusions occurring in the chain.

4.28 Definition. Let P be a prime ideal in a ring R. The height of P is

the supremum of the lengths of chains of prime ideals descending from P , i.e.,

ht(P ) = n ∈ N0 if n is maximal such that there exists a chain of prime ideals

P = P0 ⊃ P1 ⊃ . . . ⊃ Pn , and ht(P ) = ∞ if there are chains of prime ideals of

arbitrary length descending from P .)

4.29 Definition. The Krull dimension dim(R) of a ring R is the supremum of

the heights of the prime ideals of R.

15



Note that a zero-dimensional commutative ring is either a field or else a ring

with zero-divisors in which every prime ideal is maximal; and that an integral

domain is one-dimensional if and only if every prime ideal other than (0) is

maximal.

4.30 Theorem. Let R ⊆ T be commutative rings.

(1) If “incomparability” holds and P is a prime ideal of R then for every prime

ideal Q of T with Q ∩R = P we have ht(Q) ≤ ht(P ).

(2) If “going up” holds and P is a prime ideal of R of finite height then there

exists a prime ideal Q of R with Q ∩R = P and ht(Q) ≥ ht(P ).

4.31 Corollary. If both “incomparability” and “going up” hold for R ⊆ T (in

particular, if R ⊆ T is an integral extension) then for every prime ideal P of R

there exists a prime ideal Q of R with Q ∩R = P and ht(Q) = ht(P ).

Proof. Ad 1) Every chain of prime ideals descending from Q contracts to a chain

of the same length descending from P , hence ht(P ) ≥ ht(Q).

Ad 2) “Lying over” and repeated applications of “going up” allow us to construct

for every prime ideal chain descending from P a chain of prime ideals in T of the

same length descending from some Q with Q ∩R = P . �

4.32 Definition. The co-height of a prime ideal P of a commutative ring R is

the maximal length of a chain of prime ideals ascending from P (in other words,

co-ht(P ) = dim(R/P ).)

4.33 Theorem. Let R⊆T be commutative rings. If “going up” and “incompara-

bility” hold (in particular, if R ⊆ T is an integral extension) then for every prime

ideal P of R and prime ideal Q of T with Q∩R=P we have co-ht(Q)= co-ht(P ).

Proof. Easy. �

4.34 Theorem. Let S be a multiplicative subset of a domain R. If R is integrally

closed then so is RS .

Proof. Let K be the quotient field of R and RS , u ∈K integral over RS ; to show

u ∈ RS .

un +
an−1

sn−1
un−1 + . . .+

a0
s0

= 0 ai ∈ R, si ∈ S

By multiplication with s = s0 . . . sn−1 we get

sun + rn−1an−1u
n−1 + . . .+ r0a0 = 0 ri, ai ∈ R.
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Multiplication with sn−1 shows su to be integral over R; therefore su ∈ R, and

u ∈ RS . �

4.35 Theorem. Let Rα , α ∈ A be a collection of integral domains all contained

in a field K . If every Rα is integrally closed (in its quotient field) then so is
⋂

α∈ARα . The same holds for “integrally closed in K”.

Proof. Easy. �

Since every domain R satisfies R =
⋂

PprimeRP =
⋂

MmaximalRM , we see:

4.36 Corollary. Let R be an integral domain. Then the following are equivalent:

(1) R is integrally closed.

(2) For every prime ideal P of R, RP is integrally closed.

(3) For every maximal ideal M of R, RM is integrally closed.

A commutative ring R is called normal if for every prime ideal P of R the

localization RP is an integrally closed domain. We have seen that the concepts of

normal and integrally closed coincide in the case of an integral domain.

4.37 Definition. Let R be a commutative ring, T an R-algebra and u ∈ T . Then
u is called almost integral over R if and only if there exists a finitely generated

R-submodule B of T with R[u] ⊆ B .

Comparing the definition of “almost integral” with the several characterizations

of “integral” in 4.3, we see that

(i) “integral” implies “almost integral”

(ii) for Noetherian R, the notions of “integral” and “almost integral” coincide.

(For Noetherian R, every R-submodule of a finitely generated R-module is

finitely generated, such that “almost integral” implies condition (1) of 4.3.)

4.38 Lemma. If R is a domain with quotient field K , then u ∈ K is almost

integral over R if and only if R[u] is a fractional ideal of R, i.e., if there exists a

non-zero d ∈ R such that dw ∈ R for every w ∈ R[u], or equivalently, such that

dun ∈ R for all n ∈ N:

Proof. If u is almost integral and R[u] ⊆ B , where b1, . . . , bm generate B as

an R-module then there exists a non-zero common denominator d with dbi ∈ R

(1 ≤ i ≤m) and hence dR[u] ⊆ dB ⊆ R. Conversely, if there exists d ∈ R, d 6= 0,

with dR[u]⊆R then R[u]⊆ d−1R, and d−1R is finitely generated (even cyclic) as

an R-module. �
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4.39 Definition. A domain D with quotient field K is called completely inte-

grally closed if every element of K that is almost integral over D lies in D.

As we have seen, for Noetherian domains the notions of “integrally closed” and

“completely integrally closed” coincide.
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5. Primary ideals and the radical.

∗ ∗ ∗ Multiplicatively closed setes. ∗ ∗ ∗

5.1 Definition. A non-empty subset S of a commutative ring R is called multi-

plicatively closed, or multiplicative, if s, t ∈ S implies st ∈ S .
A multiplicatively closed set S is called saturated if it contains every divisor

of each of its elements, i.e., if s = ab ∈ S implies a ∈ S .
The set S̄ = {t ∈ R | ∃s ∈ S t

∣

∣ s} of divisors of elements of a multiplicatve set

S – clearly the smallest saturated multiplcative set containing S – is called the

saturation of S .

Examples of multiplicatively closed sets (1–3 are saturated):

1) R \ P , where P is a prime ideal of R,

2) R \⋃α∈A Pα , where all Pα are prime ideals of R

3) the set of all non-zerodivisors in R

4) the set of powers of a fixed element {rn | n ∈ N0}.

5.2 Lemma. Let S be a multiplicatively closed subset of R and I an ideal of R

with I ∩S = ∅. Then there exists a prime ideal P of R with I ⊆P and P ∩S = ∅.
Proof. Apply Zorn’s Lemma to J = {J ER | I ⊆ J and S ∩ J = ∅}. Since I ∈ J ,

J 6= ∅. Every chain of ideals in J has an upper bound in J : its union is in J .

Let P be a maximal element of J . We will show that P is prime. S 6= ∅ implies

P 6= R. Suppose ab ∈ P , a /∈ P and b /∈ P . By maximality of P there exists

s ∈ S ∩ (P +Ra) and t ∈ S ∩ (P +Rb). But then st ∈ S ∩ P , a contradiction. �

5.3 Corollary.

(i) Let S be a saturated multiplicatively closed subset of R. Then S=R\⋃P∈P P ,

where P is the set of all prime ideals P of R with S ∩ P = ∅.
(ii) The saturated multiplicative subsets of R are precisely the complements of

unions of prime ideals. (The trivial case S = R corresponds to the empty

union of prime ideals).

Proof. Ad (i). Clearly, S ⊆ R \⋃P∈P P . For the reverse inclusion, we show that

for every u /∈ S there exists some prime ideal P with S ∩ P = ∅ and u ∈ P . S

being saturated, u /∈ S implies Ru ∩ S = ∅. By Lemma 5.2 there exists a prime

ideal P with Ru ⊆ P and S ∩ P = ∅. This shows (i). Since the complement of a

union of prime ideals is a saturated multiplicateve set, (ii) follows. �
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5.4 Corollary. The set Z(R) of zero-divisors of a commutative ring R is a

union of prime ideals of R. More generally, the set Z(M) of zero-divisors of any

R-module M is a union of prime ideals of R.

Proof. Verify that R \ Z(R), and more generally, R \ Z(M), is a saturated

multplicative set. �

5.5 Lemma. Let I be an ideal of R and P a prime ideal containing I . Then

there exists a minimal prime P ′ of I with I ⊆ P ′ ⊆ P .

Proof. Let S =R \P and consider the set S of multiplicatively closed sets T with

S⊆T and T ∩I =∅. Then S is non-empty because S ∈S . Every chain of elements

of S has an upper bound in S (its union). Let S0 be a maximal element of S
(which exists by Zorn’s Lemma), and set U =R \S0 . By Lemma 5.2, there exists

a prime ideal P ′ containing I and disjoint from S0 , i.e., I ⊆ P ′ ⊆ U . It follows

that P ′ = U and P ′ is a minimal prime of I , since for any prime ideal Q with

I ⊆ Q$U , its complement R \ Q would be an element of S stricltly containing

S0 . �

∗ ∗ ∗ The radical. ∗ ∗ ∗

5.6 Definition. Let I be an ideal of R. The radical of I is defined by

√
I = {r ∈ R | ∃n ∈ N rn ∈ I}.

Convince yourself of the following easy facts:

5.7 Remark:

(1)
√√

I =
√
I

(2) I ⊆
√
I

(3) I ⊆ J implies
√
I ⊂

√
J

(3)
√
I = R ⇐⇒ I = R

(4) If Q is an intersection of prime ideals then
√
Q = Q.

Recall that an element r ∈ R is called nilpotent if there exists a natural

number n with rn = 0.

5.8 Definition. The radical of (0), consisting of all nilpotent elements of R, is

called the nilradical of R:

Nil(R) = {r ∈ R | ∃n ∈ N rn = 0}.
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5.9 Proposition. √
I =

⋂

P prime
I ⊆ P

P.

Proof. Clearly,
√
I is contained in all prime ideals containing I . Conversely, if

r /∈
√
I , then S = {rn | n ∈ N} is a multiplicatively closed set with S ∩ I = ∅ and

by Lemma 5.2, there exists a prime ideal P with I ⊆ P and r /∈ P . �

5.10 Corollary. The nilradical of R is the intersection of all prime ideals of R.

5.11 Lemma. Some rules of arithmetic for radicals:

(1)
√
IJ =

√
I ∩ J =

√
I ∩

√
J

(2)
√√

I +
√
J =

√
I + J

(3)
√
I +

√
J = R ⇐⇒ I + J = R

Proof. Exercise. �

5.12 Lemma. Let P be a prime ideal of R and I an ideal of R.

(i) Pn ⊆ I ⊆ P for some n ∈ N implies
√
I = P .

(ii) If R is Noetherian, then
√
I = P implies for some n Pn ⊆ I ⊆ P .

Proof. (i) is easy. Ad (ii), P = (p1, . . . , pm) =
√
I implies for some k ∈ N,

pk1 , . . . , p
k
m ∈ I . Every element q of P is an R-linear combination of the pi . By

the multinomial theorem, (r1p1 + . . .+ rmpm)mk is a sum of terms each of which

is divisible by pki for some i, therefore qmk ∈ I for every q ∈ P . �

∗ ∗ ∗ Primary ideals ∗ ∗ ∗

5.13 Definition. An ideal Q of R is called primary iff Q 6=R and for all a, b ∈R
with ab ∈ Q either a ∈ Q or ∃n ∈ N bn ∈ Q.

The definition of primary tends to be confusing at first. If Q is primary, then

ab ∈ Q implies a ∈ Q or b ∈ √
Q , as well as, by symmetry, b ∈ Q or a ∈ √

Q .

Therefore, for an ideal Q 6= R, being primary is equivalent to

ab ∈ Q⇒ a ∈ Q ∨ b ∈ Q ∨ a, b ∈
√

Q

5.14 Easy exercise. If Q is a primary ideal then
√
Q is a prime ideal.
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5.15 Definition. A primary ideal Q with
√
Q = P is called P-primary.

Not every ideal whose radical is prime is primary, however. For instance,√
Pn = P for every prime ideal P and n ∈ N, but not every power of a prime

ideal is primary. In a more positive vein, we have the following facts:

5.16 Lemma. Let M be a maximal ideal of R and Q an ideal with
√
Q =M .

Then Q is M -primary.

Proof. Suppose ab ∈ Q and a /∈M ; we must show b ∈ Q. We have M + aR = R,

i.e.,
√
Q + aR = R. This implies Q+ aR = R, so 1 = q + ar for some q ∈ Q and

r ∈ R, and finally b = qb+ abr ∈ Q. �

5.17 Corollary. Let M be a maximal ideal of R and I 6=R an ideal with Mn ⊆ I

for some n ∈ N. Then I is M -primary.

Proof. I is not contained in any prime ideal P other than M : if I ⊆ P then for

every m ∈M , mn ∈ I ⊆ P implies m ∈ P , hence M = P . Since I 6=R, this shows√
I =M and we are done. �

Just like prime ideals, primary ideals behave nicely with respect to ring homo-

morphisms:

5.18 Lemma. Let f :R→ T be a ring homomorphism (with f(1) = 1, as always)

and I, Q ideals of T . Then

(1) f−1(
√
I ) =

√

f−1(I) .

(2) If Q is P -primary then f−1(Q) is f−1(P )-primary.

Again, like prime ideals, primary ideals can be characterized by a property of

their quotient ring.

5.19 Proposition. An ideal Q is primary if and only if R/Q is a non-zero ring in

which every zero-divisor is nilpotent.

Proof. Easy. �

Together with the previous lemma this implies that a canonical projection

induces a bijection between primary ideals containing the kernel and primary ideals

in the quotient ring. (Note that everything we show for canonical projections

holds mutatis mutandis for any surjective ring homomorphism f :R → T , since

f is just the canonical projection π:R → R/Kerf followed by the isomorphism

f̄ :R/Kerf → T .)
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5.20 Proposition. Let I be an ideal of R and π:R→R/I the canonical projection.

Then a bijection between all primary ideals Q of R with I ⊆ Q and all primary

ideals of R/I is given by Q 7→ π(Q). Its inverse is Q̃ 7→ π−1(Q̃) (for Q̃ER/I ).

Primary ideals also behave just like prime ideals with respect to the canonical

homomorphism into a ring of fractions fS :R → RS and with respect to the

canonical projection onto a residue class ring:

5.21 Proposition. Let RS be a ring of fractions of R and fS:R → RS the

canonical homomorphism.

(1) If QER is primary and r
s ∈ QS then r ∈ Q.

(2) A bijection between the primary ideals Q of R with S ∩Q= ∅ and all primary

ideals of RS is given by Q 7→ QS (for Q a primary ideal of R). Its inverse is

Q̃ 7→ f−1
S Q̃ (for Q̃ a primary ideal of RS ).

This is shown just like the analogous statement for prime ideals. (Note that

Q ∩ S = ∅ implies
√
Q ∩ S = ∅.)
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6. Rings of Quotients and Localization

A multiplicatively closed subset of a ring is a set S 6= ∅ such that st ∈ S

whenever s, t ∈ S . A multiplicatively closed set S is saturated, if S contains

all divisors of every s ∈ S . The saturation of a multiplicatively closed set S is

S̄ = {t ∈ R | ∃r ∈ R rt ∈ S}.

6.1 Definition. If S is a multiplicatively closed subset of a commutative ring R

and 0 /∈S then the ring of fractions of R with denominators in S , (RS,+, ·)
and the canonical homomorphism fS:R→ RS are defined as follows:

RS is the set of equivalence classes on S ×R under the equivalence relation

(s, r) ∼ (s′, r′) :⇐⇒ ∃t ∈ S tsr′ = ts′r.

The equivalence class of (s, r) is denoted by r
s
. Addition and multiplication are

defined by
r

s
+
r′

s′
=
s′r + sr′

ss′
and

r

s
· r

′

s′
=
rr′

ss′

and the canonical homomorphism fS:R→ RS by fS(r) =
rs
s (for any s ∈ S).

A lot of facts have to be checked before the above definition can be called valid,

for instance that ∼ is really an equivalence relation, that addition and multipli-

cation are well-defined (i.e. the resulting equivalence class depends only on the

equivalence classes of the arguments and not on the numerator and denominator

of the fractions representing them), that RS satisfies the ring axioms, and that fS

is well-defined and a ring homomorphism. These verifications are easy, if tedious.

In doing them, one inevitably encounters the following properties of RS :

6.2 Remark:

(1) We do not exclude any interesting cases by stipulating 0 /∈ S . If 0 ∈ S then

the construction would yield RS = {0}.
(2) For all r ∈ R and s, t ∈ S r

s = rt
st .

(3) RS is a commutative ring with zero 0
s and identity s

s (for any s ∈ S).
(4) r

s
= r′

s′
iff there exists a t ∈ S with trs′ = tr′s.

(5) If S contains no zero-divisors, then r
s = r′

s′ iff rs′ = r′s.

(6) r
s
= 0 iff there exists a t ∈ S with rt = 0.

(7) If S contains no zero-divisors, then r
s = 0 iff r = 0.

(8) r
s
is a unit iff there exists a t ∈ S with rt ∈ S .

(9) If S is saturated, then r
s is a unit iff r ∈ S .
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(10) For every s ∈ S fS(s) is a unit in RS .

(11) KerfS = {r ∈ R | ∃t ∈ S rt = 0}.
(12) fS is injective iff S contains no zero-divisor.

6.3 Lemma. Let S be a multiplicatively closed subset of R and S̄ its saturation.

Then ϕ:RS → S̄
−1
R given by ϕ( rs ) =

r
s is an isomorphism of rings.

Proof. ϕ is well-defined and a ringhomomorphism; to see injectivity, suppose
r
s ∈Kerϕ, then rt= 0 for some t ∈ S̄ . t divides some t′ ∈ S , such that t′r = 0 and

therefore r
s =0 in RS . For surjectivity, consider

r
t with r ∈R and t∈ S̄ . For some

s ∈ S and w ∈ R we have s = tw (and thus w ∈ S̄) and r
t
= rw

tw
= rw

s
= ϕ( rw

s
). �

6.4 Proposition. All rings of quotients of R are of the form form RS with

S = R \⋃P∈P P for a set P of prime ideals of R.

Proof. By the previous lemma, every ring of quotients is of the form RS with S

saturated. By Lemma 5.3, every saturated multiplicative set is the complement of

a union of prime ideals and vice versa. �

The importance of the construction lies in the relationship between ideals of

R and ideals of RS . We already know that for every ideal I of R, fS(I)RS is an

ideal of RS - the extension of I into RS . We denote this ideal by IS .

6.5 Definition. Names and notation for examples of rings of fractions:

• If S is the set of all non-zero-divisors of R, then RS is called the total ring

of fractions of R; a special case of this is the quotient field of an integral

domain, which is RS with S = R \ {0}.
• If S = R \ P for a prime ideal P of R, then RS is denoted RP and called the

localization of R at P . The ideal IS of RP is denoted IP or IRP .

6.6 Remark: The apparent ambiguity of notation in the preceding definition –

RS the ring of fractions with denominators in S , and RP the ring of fractions with

denominators in the complement R \ P – we resolve by the following convention:

if 0 /∈ S then RS denotes the ring of fractions of R with denominators in S , but

if 0 ∈ S , e.g., if S is a union of prime ideals, then RS denotes the ring of fractions

of R with denominators in R \ S .

6.7 Lemma. Let I be an ideal of R and IS = fS(I)RS the extension of I to IS .

Then IS consists of precisely those elements of RS that admit a representation as

a fraction with numerator in I :

IS = { i
s
∈ RS | i ∈ I}.
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Proof. (⊆) is obvious. For (⊇), let i ∈ I , s ∈ S . Then

i

s
=
is2

s3
=
is

s

s

s2
= fS(i)

s

s2
∈ fS(I)RS.

�

Note, however, that r
s ∈ IS does not imply r ∈ I , except in special cases such

as:

6.8 Lemma. If P is a primary ideal of R with P ∩ S = ∅ then r
s ∈ PS implies

r ∈ P .

Proof. Let r
s
∈ PS with P primary. By 6.7, there exist p ∈ P and s′ ∈ S with

r
s = p

s′ , and ts′r = tsp for some t ∈ S . Since ts′ ∈ S , no power of ts′ is in P .

Therefore r ∈ P . �

Likewise, for every ideal J of RS , f
−1
S (J) is an ideal of R - the contraction of

J to R. (If fS is injective then f−1
S (J) = J ∩R.) Also, if J is a prime [or primary]

ideal then so is f−1
S (J).

6.9 Lemma. Let J be an ideal of RS and I and ideal of R.

The inverse image of J under fS consists precisely of all numerators that occur

in fraction representations of elements of J :

f−1
S (J) = {r ∈ R | ∃s ∈ S r

s
∈ J}.

Proof. (⊆) Let r ∈ R with fS(r) ∈ J . Then s
s2
fS(r) =

s
s2

sr
s
= r

s
∈ J .

For (⊇), consider r ∈ R with r
s ∈ J . Then fS(r) =

sr
s = r

s
s2

s ∈ J . �

6.10 Theorem.

(a) For every ideal J of RS , (f
−1
S (J))S = J .

(b) Every ideal of RS is of the form IS = { i
s ∈ RS | i ∈ I} for some ideal I of

R.

(c) IS = RS iff I ∩ S 6= ∅.
(d) A bijection between those prime ideals P of R with S∩P = ∅ and all prime

ideals of RS is given by P 7→ PS (for P a prime ideal of R); its inverse is

Q 7→ f−1
S (Q) (for Q a prime ideal of RS ).

(e) Like (d), with “prime” replaced by “primary”.
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6.11 Corollary. In terms of extension and contraction by fS :R→ RS , we have

Jce = J for every ideal J of RS and P ec = P for every primary ideal P of R with

P ∩ S = ∅.

6.12 Corollary. Let P be a prime ideal of R. Then every ideal of RP is of the

form IP = { i
s ∈ RP | i ∈ I} for some ideal I of R with I ⊆ P . Via Q 7→ QP the

prime ideals of RP correspond bijectively to the prime ideals Q of R with Q⊆ P .

In particular, RP is a local ring with maximal ideal PP .

6.13 Definition. A ring containing exactly one maximal ideal is called a local

ring. (Note, however, that many authors call such rings quasi-local, reserving the

name local for Noetherian rings with a unique maximal ideal.)

6.14 Exercise. A ring is local if and only if the set of non-units forms an ideal.

6.15 Theorem. (localization commutes with quotients) Let S be a multiplicative

subset of R, I an ideal of R, and π:R→ R/I the canonical projection then

(R/I)((S+I)/I) ≃ RS/IS .

6.16 Easy exercise. The following is a well-defined ring-isomorphism:

(r + I)

(s+ I)
7→ r

s
+ IS

6.17 Corollary. For every prime ideal P of R

(R/P )(0) ≃ RP /PP .

6.18 Definition. If P is a prime ideal of R, we have seen that the quotient field of

the integral domain R/P is the same as the residue field of the maximal ideal PP

of RP . This field is called the residue field of P .

∗ ∗ ∗ Symbolic powers ∗ ∗ ∗

6.19 Definition. Let P be a prime ideal of R. The n-th symbolic power of P is

defined by P (n) = R ∩ PnRP .

The n-th symbolic power of P is the contraction back to R of the extension

of Pn into RP and thus contains Pn .
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6.20 Proposition. Let P be a prime ideal of R and n ∈ N.

(1) P (n) = (PP )
n ∩R

(2) P (n) is P -primary.

(3) If Q is a primary ideal then Pn ⊆ Q =⇒ P (n) ⊆ Q.

(4) P (n) = Pn ⇐⇒ Pn is primary.

(5) If M is a maximal ideal of R then M (n) =Mn for all n ∈ N.

Proof. (2) Since PP is a maximal ideal of RP , (PP )
n is PP -primary. By 5.18,

P (n) is P -primary. (4) follows from (2) and (3); (5) follows from (4). �
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7. Valuation rings

7.1 Definition. A commutative ring R is called a valuation ring if for every two

elements a, b ∈ R either a
∣

∣ b or b
∣

∣ a holds.

The definition of valuation ring is equivalent to saying that the principal ideals

of R are totally ordered with respect to inclusion. In fact, more is true.

7.2 Lemma. Let R be a valuation ring. Then the ideals of R are totally ordered

with respect to inclusion. In particular, R is a local ring.

Proof. Let I, J be ideals of R and suppose I 6⊆ J . Let i ∈ I \ J . Then for all

j ∈ J , j
∣

∣/i, and therefore i
∣

∣ j . We have shown J ⊆ iR ⊆ I . As a commutative

ring with unity, R possesses at least one maximal ideal. Because of the total order

on ideals, R can have at most one maximal ideal. Therefore, R has exactly one

maximal ideal, that is, R is local. �

7.3 Exercise. Show that set of zero-divisors in a valuation ring is a prime ideal.

Although our definition of valuation ring is phrased for commutative rings in

general, we will mostly be interested in valuation rings that are integral domains.

7.4 Remark: Let V be an integral domain contained in a field K . It is easy to

see that V is a valuation ring with quotient field K if and only if for every u ∈K
either u ∈ V or u−1 ∈ V .

7.5 Remark: If V is a valuation ring with quotient field K and R a ring with

V ⊆ R ⊆ K then R is also a valuation ring. This is an easy consequence of the

preceeding remark.

The unique maximal ideal of a valuation domain V then consists of all elements

u in the quotient field K with u−1 /∈ V . Moreover, if M is this unique maximal

ideal of V then for every u ∈K exactly one of the alternatives u ∈M or u−1 ∈ V
holds.

∗ ∗ ∗ Valuations ∗ ∗ ∗

7.6 Definition. Let (G,+) be an Abelian group and ≤ an order relation compatible

with the group operation (i.e., g ≤ g′ and h ≤ h′ implies g + h ≤ g′ + h′). Then

(G,+,≤) is called an ordered group. If, moreover, ≤ is a total ordering of G (i.e.,

for all g, h ∈ G, either g ≤ h or h ≤ g holds) then (G,+,≤) is called a totally

ordered group.
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Notation: we will use g < h for “g ≤ h and g 6= h” and g ≥ h for h ≤ g .

7.7 Definition. Let K be a field and (G,+) a totally ordered group. v:K∗ → G

(where K∗ =K \ {0}) is called a valuation on K if

(1) v(ab) = v(a) + v(b) and

(2) v(a+ b) ≥min(v(a), v(b)).

The subgroup Γv = Im(v) of G is called the valuation group of v . It is

customary to extend the definition of v to all of K by adding an infinity element

to G and setting v(0) = ∞. With the conventions ∞+∞ =∞, g +∞ =∞ and

g ≤ ∞ for all g ∈ G, (1) and (2) still hold and

(3) v(a) =∞ ⇐⇒ a = 0

7.8 Exercise. Some easy consequences of the definition of a valuation v :

(i) v(1) = 0

(ii) v(a−1) = −v(a)
(iii) v(−a) = v(a)

(iv) v(a− b) ≥min(v(a), v(b))

(iv) v(a) 6= v(b) =⇒ v(a+ b) = min(v(a), v(b)).

If v is a valuation on K then Rv = {k ∈ K | v(k) ≥ 0} is a local ring with

maximal ideal Mv = {k ∈ K | v(k) > 0}. Clearly, the units of Rv are exactly

those field elements with both k and k−1 in Rv , that is, the elements of Rv with

v(k) = 0. Rv is a valuation ring, since for all a, b ∈ Rv either v(a) ≤ v(b) or

v(b) ≤ v(a), where v(a) ≤ v(b) means b
a
∈ Rv , or, equivalently, a

∣

∣ b in Rv .

Rv = {k ∈ K | v(k) ≥ 0} is called the valuation ring of the valuation v . We

will show that every valuation domain arises in this way, from a valuation on its

quotient field.

7.9 Lemma. Let R be a valuation domain with quotient field K then the

R-submodules of K are totally ordered by inclusion

Proof. Let I, J ⊆K be R-modules and I 6⊆ J . Let i ∈ I \J . Then for all j 6= 0 in

J either i
j
∈R or j

i
∈R, but i

j
∈R is impossible, since it would imply i= j i

j
∈ J .

Therefore for all j 6= 0 in J we have j
i ∈R, which implies j = i( ji ) ∈ iR⊆ I . Thus

I 6⊆ J implies J ⊆ iR ⊆ I . �

7.10 Definition. Let R be a domain with quotient field K . Let

G = {zR | z ∈K, z 6= 0}.
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On G, we define the binary operation

yR ⋆ zR := yzR

and the relation

yR ≤ zR ⇐⇒ yR ⊇ zR.

The resulting ordered group (G, ⋆,≤) is an called the group of divisibility of

R. Moreover,

w:K∗ → G w(z) = zR

is a group epimorphism whose kernel is the group of units of R.

7.11 Exercise. Show that the group of divisibility as defined above actually is an

ordered group. Let U be the group of units of R. The quotient group (K∗, ·)/(U, ·)
with the order relation

ȳ ≤ z̄ ⇐⇒ z

y
∈ R

and the group of divisibility of R are isomorphic as ordered groups.

7.12 Proposition. Let R be a valuation domain with quotient field K . Then the

group of divisibility of R is a totally ordered group and

v:K∗ → G v(z) = zR

is a valuation on K whose valuation ring is R.

Proof. Easy. �

∗ ∗ ∗ Valuation rings and integral closure ∗ ∗ ∗

7.13 Definition. A ring is called Bézout ring if every finitely generated ideal is

principal.

7.14 Remark: It is clear that every valuation ring is a Bézout ring. In particular,

every valuation ring is a GCD-ring. Therefore every valuation domain is integrally

closed. (This is of course easy to show directly.)

We have seen that valuation domains are integrally closed. It follows that

arbitrary intersections of valuation domains contained in a field are integrally

closed. We shall see that conversely, every integral closure of a domain is an

intersection of valuation domains.

Before showing this, however, we note in passing that valuation rings are

characterized among local rings by the Bézout ring property.
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7.15 Lemma. A local ring is a valuation ring if and only if it is a Bézout ring.

Proof. Every valuation ring is a Bézout ring. Conversely, let R be a local Bézout

ring and a, b ∈ R. We must show a
∣

∣ b or b
∣

∣ a. By dividing a and b by their

greatest common divisor, we may assume gcd(a, b)= 1 and therefore Ra+Rb=R.

This shows that a and b are not both in the unique maximal ideal of R, hence

one of them is a unit and therefore divides the other. �

7.16 Lemma. Let R ⊆ T be commutative rings, I an ideal of R and u ∈ T a

unit. If IR 6= R then IA 6= A for either A = R[u] or for A = R[u−1].

Proof. Suppose otherwise. Then there exist ai and bi ∈ I such that

1 = a0 + a1u+ . . .+ anu
n(∗)

1 = b0 + b1u
−1 + . . .+ bmu

−m(∗∗)

where n, m ∈ N are minimal and w.l.o.g. n ≥m.

Multiplication of (∗∗) with un gives

(1− b0)u
n = −b1un−1 − . . .− bmu

n−m.

By multiplying (∗) with (1 − b0) and substituting for (1− b0)u
n from the above

formula we can express 1 as an I -linear combination of powers uk with 0≤k≤n−1,

contradicting the minimality of n. �

7.17 Lemma. Let R ⊆ K be an integral domain contained in a field and I an

ideal of R. If I 6=R then there exists a valuation domain V with quotient field K

such that R ⊆ V and IV 6= V .

Proof. Let S be the set of pairs (Rα, Iα) where Rα is a ring with ideal Iα 6= Rα

and R ⊆ Rα as well as I ⊆ Iα . We order S by (Rα, Iα) ≤ (Rβ , Iβ) if and only if

both Rα ⊆ Rβ and Iα ⊆ Iβ . By Zorn’s Lemma, S has a maximal element (V, J).

We know IV 6= V , since I ⊆ J . Now let u be an element of K , we must show

u ∈ V or u−1 ∈ V . Suppose not. Since by a previous lemma the extension of J is

a proper ideal of either V [u] or V [u−1], either (V [u], JV [u]) or (V [u−1], JV [u−1])

is an element of S strictly greater than (V, J), a contradiction. �

7.18 Theorem. Let R be an integral domain with quotient field K and R′ the

integral closure of R. Then R′ =
⋂

R⊆V ⊆K V , where V ranges over all valuation

domains between R and K .
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Proof.
⋂

R⊆V⊆K V contains R, is integrally closed (as an intersection of integrally

closed domains) and therefore contains R′ . Conversely, let z ∈ ⋂

R⊆V ⊆K V ; we

must show z is integral over R. Suppose not. Let z= u−1 . Then u−1 /∈R′ implies

u−1 /∈R[u]. Since u is not a unit in R[u], uR[u] 6=R[u] and there exists a valuation

domain V containing R[u] with uV 6= V . This contradicts z = u−1 ∈ V . �

∗ ∗ ∗ Valuations and Polynomials ∗ ∗ ∗

7.19 Exercise. Let v be a valuation on a field K . For f =
∑d

n=0 anx
n ∈ K[x]

define v(f) = min{v(an) | 0 ≤ n ≤ d}. Then
(i) v(fg) = v(f) + v(g).

(ii) The extension of v to K(x) by v(f/g) = v(f) − v(g) defines a valuation on

K(x).

7.20 Exercise. Let v be a valuation on K and f, g, h monic polynomials in K[x]

with f(x) = g(x)h(x). If f ∈ Rv[x] then g and h are in Rv[x].

∗ ∗ ∗ Invertible ideals and Prüfer rings ∗ ∗ ∗

7.21 Definition. Let R be an integral domain with quotient field K and I an

R-submodule of K .

• I is called a fractional ideal of R if there exists a non-zero r ∈ R such that

rI ⊆ R.

• The inverse of I is defined as I−1 = {z ∈K | zI ⊆ R}.
• I is called invertible if I−1I = R. (Note that I−1I ⊆ R is automatic.)

In the context of invertible ideals, fractional ideals are usually just called ideals,

“fractional” being understood. No confusion should result.

7.22 Remark:

1) Every finitely generated R-submodule of K is a fractional ideal. (We can

multiply I by a common denominator of the generators.)

2) Every non-zero principal fractional ideal is invertible. (The inverse of Ra

is Ra−1 and RaRa−1 = R.)

7.23 Proposition. Let I be an R-submodule of K . If I is invertible then I is

finitely generated.

Proof. I−1I = R, so there exist ai ∈ I−1 and bi ∈ I with
∑n

i−1 aibi = 1. We

claim the bi generate I . Let c ∈ I . c = 1c =
∑n

i=1 aicbi . Now ai ∈ I−1 implies

aic = ri ∈ R and we have c =
∑n

i=1 ribi . �
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7.24 Definition. A commutative ring R with only finitely many maximal ideals is

called semi-local.

7.25 Proposition. Let R be a semi-local domain. Then every invertible ideal is

principal.

Proof. Let M1, . . . ,Mn be the maximal ideals of R. By II−1 = R, there exist

ai ∈ I and bi ∈ I−1 such that aibi /∈ Mi . By the Chinese Remainder Theorem,

there exists ui ∈ R with ui /∈ Mi and ui ∈
⋂

j 6=iMj . Let v =
∑n

i=1 uibi . Then

vI ⊆ R is an ideal of R and not contained in any Mi , since vai /∈Mi . Therefore

vI = R. This shows I = v−1R. I is principal. �

To be able to consider localizations of fractional ideals we need to extend the

construction of rings of fractions to modules:

7.26 Definition. Let R be a commutative ring, S ⊆ R a multiplicative set and

M an R-module. The RS -module MS is defined as follows: Its elements are the

equivalence classes on S ×M w.r.t. the equivalence relation

(s,m) ∼ (s′, m′) :⇐⇒ ∃t ∈ S t(sm′ − s′m) = 0.

The equivalence class of (s,m) is denoted by m
s . Addition and scalar multiplica-

tion are defined by:

m

s
+
m′

s′
=
s′m+ sm′

ss′
and

r

s
· m
s′

=
rm

ss′

If S =R \ P for a prime ideal P of R then MS is denoted MP and called the

localization of M at P .

7.27 Remark:

(i) The zero-element of MS is 0
s
for any s ∈ S , and m

s
= 0 iff there exists a

t ∈ S with tm = 0.

(ii) The map f :M →MS given by f(m) = sm
s

(or f(m) = m
1
, if 1 ∈ S) is an

R-module homomorphism with Kerf = {m ∈M | ∃s ∈ S sm = 0}.

7.28 Lemma. If f :M → N is an R-module homomorphism, then

fS:MS → NS fS(
m

s
) :=

f(m)

s

is an RS -module homomorphism. Also,

(i) S−1idM = idMS

(ii) fS ◦ gS = S−1(f ◦ g)
(iii) KerfS = S−1Kerf ; ImfS = S−1Imf
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(Furthermore, S−1 is an exact functor, i.e. it maps exact sequences of R-

modules to exact sequences of RS -modules.)

7.29 Proposition. Let I be an invertible ideal of a domain R, S ⊆ R a

multiplicative subset of R. Then IS is an invertible ideal of RS .

Proof. Easy. �

7.30 Theorem. Let I be a finitely generated ideal of an integral domain R.

Then I is invertible if and only if IM is principal for every maximal ideal M of

R.

Proof. If I is invertible, we have seen that IM is invertible and hence principal for

every maximal ideal M of R. Conversely, assume every IM is principal. Suppose

I is not invertible then II−1⊆M for some maximal ideal M of R. IM is principal,

and we may choose a generator in I : IM = iRM , with i∈I . Let I=Ri1+. . .+Rin .
Then there exist rk ∈ R and sk ∈ R \M with ik = rk

sk
i. Set s = s1 . . . sn . Then

si−1ik ∈ R for every generator ik of I , and therefore si−1 ∈ I−1 . This implies

s = si−1i ∈ I−1I ⊆M , a contradiction to s ∈ R \M . �

7.31 Theorem. Let R be an integral domain. Then the following are equivalent.

(1) Every finitely generated non-zero ideal of R is invertible.

(2) RP is a valuation domain for every prime ideal P of R.

(3) RM is a valuation domain for every maximal ideal M of R.

7.32 Definition. A domain satisfying one (and hence all) of the equivalent condi-

tions in the preceding theorem is called Prüfer domain.

Proof. (1 ⇒ 2) We show that RP is Bézout. Let r1
s1
, . . . , rnsn ∈ RP , ri ∈ R,

si ∈ R \ P . Since R is Prüfer, I = r1R + . . . rnR is invertible, and therefore

IP = r1
s1
RP+. . .+ rn

sn
RP is invertible. Since RP is local, invertible implies principal.

(2 ⇒ 3) Obvious.

(3⇒1) If I is a finitely generated ideal of R then IM is principal (as a finitely gen-

erated ideal in the Bézout domain RM ) for all maximal ideals M of R. Therefore

I is invertible. �

7.33 Theorem. Let R be a Prüfer domain with quotient field K . If V is a

valuation ring with R ⊆ V ⊆K then V = RP for some prime ideal P of R.

Proof. Let M be the maximal ideal of V and P = M ∩ R. For any s ∈ R \ P ,

s /∈M implies s−1 ∈ V . Therefore RP ⊆ V .
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Suppose V 6⊆RP . Let v ∈ V \RP . Since RP is a valuation domain, v−1 ∈RP .

This means v = s
r with r ∈ R, s ∈ R \ P . We must have r ∈ P , since otherwise

v ∈ RP . Now s = rv ∈ PV ⊆M , a contradiction. �

∗ ∗ ∗ Discrete valuation rings and Dedekind domains ∗ ∗ ∗

7.34 Theorem. Let R be a local integral domain with maximal ideal M , and

not a field. The following are equivalent:

(1) R is Noetherian and integrally closed and dimR = 1.

(2) R is Noetherian and M is principal.

(3) R is a unique factorization domain with (up to multiplication by units) just

one irreducible element.

(4) R is a principal ideal domain and not a field.

Proof. (1 ⇒ 2) Let m ∈ M with m 6= 0 and mR 6= M and consider the ring

T =R/mR. mR not being prime, T is not a domain. The set Z(T ) of zero-divisors

of T is a union of prime ideals by 5.4, therefore Z(T ) equals the unique prime

ideal of T : Z(T ) =M/mR. By 10.7 (universal zero-divisor) applied to the ideal

M/mR of T , there exists a ∈ R \mR such that aM ⊆mR.

Now a
m ∈ M−1 \ R and a

mM is an ideal of R. Suppose a
mM 6= R. Then

a
m
M ⊆ M and therfore R[ a

m
]M ⊆ M . Now M is a faithful R[ a

m
]-module and

finitely generated as an R-module, which means a
m is integral over R and therefore

in R; a contradiction. Therefore a
m
M = R and M = m

a
R is principal.

(2 ⇒ 3) The ascending chain condition implies that every non-zero element is

a product of irreducible elements (the ascending chain condition for principal

ideals suffices for that). Also, every irreducible element is prime, and there is

(up to multiplication by units) only one irreducible element. (Since the unique

maximal ideal M of R is principal, it is the only principal ideal maximal among

proper principal ideals, and therefore the only ideal generated by an irreducible

element. So there is up to multiplication by units only one irreducible element and

it generates M . Now M is also a prime ideal, wherfore the unique (up to units)

irreducible element is also prime). Together this implies a unique factorization

domain with just one irreducible element.

(3 ⇒ 4) and (4⇒ 1) are easy. �

7.35 Definition. A domain satisfying one (and hence all) of the equivalent condi-

tions in the preceeding theorem is called discrete valuation domain (DVR),

or, more precisely discrete valuation domain of rank 1.
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7.36 Proposition. A domain is a DVR if and only if it is the valuation ring of a

valuation with value group isomorphic to (Z,+).

Proof. Exercise. �

7.37 Theorem. Let R be an integral domain. Then the following are equivalent

(1) Every non-zero ideal of R is invertible.

(2) R is Noetherian and integrally closed and dimR ≤ 1.

(3) R is either a field or a Noetherian domain s.t. for every maximal ideal M

of R, RM is a DVR.

7.38 Definition. A domain satisfying one (and hence all) of the equivalent condi-

tions in the preceding theorem is called a Dedekind ring.

Proof. (1⇒ 3) Invertible implies finitely generated, so R is Noetherian. Let M be

a maximal ideal of R. Every ideal of RM is of the form IM for an invertible ideal

I of R and hence is principal. RM is a local principal ideal domain and therefore

a DVR.

(3⇒ 1) For every non-zero ideal I of R, every localization IM at a maximal ideal

is principal, since RM is a principal ideal domain.

(3⇒ 2) R is integrally closed as the intersection of its localizations RM , which are

integrally closed as valuations rings. The Krull dimension of R is the supremum

of dimRM , where M ranges through the maximal ideals of R and therefore

dimR ≤ 1.

(2 ⇒ 3) If dimR ≤ 1 and R is not a field, then dim(R) = 1. For every maximal

ideal M of R, the localization RM is local, Noetherian, integrally closed and

one-dimensional and therefore a DVR by the previous Theorem. �

7.39 Theorem. Let D be a domain. If every non-zero ideal of D is invertible,

then every non-zero ideal is expressible as a product of prime ideals.

Proof. Invertible implies finitely generated, so D is Noetherian. Suppose there

exist non-zero ideals not expressible as products of prime ideals. The set of such

ideals has a maximal element, I . This I is not R (since R is an empty product

of prime ideals); nor is I itself prime, so there exists a prime ideal P ⊃ I properly

containing I . We have I ⊆ IP−1 ⊆ R. If IP−1 = I , then (since P is invertible)

multiplication by P gives I = IP and by Nakayama’s Lemma, there is an element

a ∈ R with aI = 0 and a ≡ 1 mod P , which is impossible in a domain. Therefore

IP−1 properly contains I and, by maximality of I , is expressible as a product of
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prime ideals IP−1 = P1 . . . Pm . Using PP−1 =R again, we get I = P1 . . . PmP , a

contradiction. �

7.40 Corollary. In a Dedekind ring, every non-zero ideal is uniquely expressible

as a product of prime ideals.

Proof. By 7.37, every non-zero ideal in a Dedekind ring is invertible, so 7.39

implies existence of a factorization. If P1 . . . Pn =Q1 . . .Qm then P1 , being prime,

contains one of the Qi , say Q1 ⊆ P1 . Since D is at most 1-dimensional, it follows

that Q1 = P1 and we can cancel invertible ideals and get P2 . . . Pn = Q2 . . .Qm .

Inductively we see that the factorizations are the same (up to order). �

7.41 Remark: Prime factorization of ideals characterizes Dedekind rings, even

without the assumption of uniqueness: a domain in which every ideal is a product

of prime ideals is a Dedekind domain.

∗ ∗ ∗ rank 1 valuation rings ∗ ∗ ∗

7.42 Definition. An ordered group (Γ,+) satisfies the Archimedean axiom if

for any a, b ∈ Γ with a > 0 there exists n ∈ N with na ≥ b.

7.43 Proposition. An ordered group satisfies the Archimedean axiom if and only

if it is order-isomorphic to a subgroup of (R,+).

Proof. Every subgroup of (R,+) satisfies the Archimedean axiom. Now let (Γ,+)

be an ordered group satisfying the Archimedean axiom and fix an element a > 0

of Γ. We will construct an order-preserving injective map f : Γ→ R by defining a

Dedekind cut for every b ∈ Γ. First consider only elements b > 0 and define

Sb = {m
n

∈ Q |m ∈ Z, n ∈ N, ma ≤ nb}.

Note that m
n
∈ Sb and m̃

ñ
= m

n
(with n, ñ > 0) implies that m̃a≤ ñb. Also, by the

Archimedean axiom, Sb 6= Q and Sb 6= ∅.
If m

n ∈ Sb then every m′

n′ ≤ m
n in Q is also in Sb . (By choosing a common

denominator, we may assume n′ =n, which implies m′ ≤m, and then m′a≤ma≤
nb = n′b.) Sb thus defines a unique real number supSb and we set f(b) = supSb .

We extend the definition of f to all of Γ by seting f(0) = 0 and f(b) = −f(−b)
for b < 0. It is then not hard to check that f is an order-preserving group

homomorphism and injective. �

7.44 Proposition. Let v be a valuation on a field K with valuation ring Rv and

valuation group Γv 6= 0. Then Γv satisfies the Archimedean axiom if and only if

dimRv = 1.

38



Proof. Assume the Archimedean axiom. Γv 6= 0 implies that Rv is not a field.

Suppose dimR > 1. Then there exists a prime ideal P with (0) ⊂ P ⊂Mv . Let

a∈Mv \P and b∈P \(0) and set α= v(a), β= v(b). Since α>0 there exists n∈N
with nα ≥ β . This means v(an) ≥ v(b), i.e., an

b ∈ Rv and therfore an ∈ bRv ⊆ P .

We conclude that a ∈ P , a contradiction.

Conversely, assume dimR = 1. R is a one-dimensional local ring, so Mv is its

only non-zero prime ideal and therefore the radical of every proper non-zero ideal.

In particular, for every non-zero a ∈Mv and any b ∈ Rv there exists n ∈ N such

that an ∈ bRv , which implies that for every α> 0 in Γ and every β ≥ 0 in Γ there

exists n ∈ N with nα = γ + β for some γ ≥ 0, or in other words, nα ≥ β . �

∗ ∗ ∗ Quick and dirty Dedekind ring properties ∗ ∗ ∗

7.45 Lemma. In a Noetherian ring, every non-zero ideal contains a product of

non-zero prime ideals.

Proof. Suppose M maximal among the counterexamples. Then M is not prime,

so there exist r, s with rs∈M but r /∈M and s /∈M . Since M is striclty contained

in M + rR and M + sR, these ideals each contain a product of prime ideals, and

so does (M + rR)(M + sR), which is contained in M , a contradiction. �

7.46 Lemma. Let R be a Noetherian ring with dimR= 1 and quotient field K ,

and (0)$ I $R a proper ideal of R. Then there exists γ ∈K \R with γI ⊆ R.

Proof. Let a 6= 0 in I then there exist non-zero prime ideals P, P1, . . . , Pr with

P ⊇ I ⊇ aR⊇ P1 · . . . ·Pr , where r is minimal with the property that aR contains

a product of r prime ideals. P being prime, it contains one of the Pi , say P1 ⊆ P

and therefore P1 = P . So we have

P ⊇ I ⊇ aR ⊇ P · P2 · . . . · Pr.

Pick b ∈ P2 · . . . · Pr \ aR (possible by minimality of r) and set γ = b/a. Then

γ /∈ R, and for every i ∈ I , iγ = (ib)/a is in R, because ib ∈ P · P2 · . . . · Pr ⊆ aR.

�

7.47 Theorem. In a Dedekind ring, every non-zero ideal is invertible.

Proof. Let I 6= (0) and suppose I−1I $R. Let γ ∈ K \ R with γI−1I ⊆ R, then

γI−1 ⊆ I−1 . This makes I−1 a faithful R[γ]-module which is finitely generated as

R-module, showing γ ∈ K \R to be integral over R - a contradiction to R being

integrally closed. �
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7.48 Corollary. In a Dedekind ring, every non-zero ideal is a product of prime

ideals, and this prime factorization is unique.

Proof. Existence first: R is an empty product of prime ideals. Let I 6= R be

a non-zero ideal of R then I ⊆ P0 for some prime ideal P0 . If I = P0 we are

done. If I ⊂ P0 , then, P0 being invertible, I = (IP−1
0 )P0 and we can iterate the

process of finding a prime factor with I1 = (IP−1
0 ). This process terminates with

In = IP−1
0 . . . P−1

n−1 = Pn a prime ideal (and therefore I = P−1
0 . . . Pn) because

otherwise we would have an infinte ascending chain of ideals I ⊂ I1 ⊂ I2 ⊂ . . .,

where Ik = IP−1
0 . . . Pk−1 .

Uniqueness: Suppose P1 . . . Pn = Q1 . . .Qm , all Pi and Qi prime. Induction

on min(n,m). If P1 . . . Pn = Q1 then, Q1 being prime, there exists an index i

with Pi ⊆Q1 , w.l.o.g. P1 ⊆Q1 . As P1 is maximal, we have P1 =Q1 . We see that

n = 1, because multiplication with P−1
1 gives P2 . . .Pn = R, in particular R ⊆ Pi

for i ≥ 2, therefore prime ideals with indices i ≥ 2 do not exist.

If min(n,m)> 1 and P1 . . . Pn =Q1 . . .Qm , then again P1 . . . Pn ⊆Q1 implies

that for some i Pi = Q1 , w.l.o.g. P1 = Q1 , and we may cancel P1 = Q1 by

multiplying both sides with Q−1
1 , and get P2 . . . Pn = Q2 . . .Qm . By induction

hypothesis n =m and P2, . . . , Pn and Q2, . . . , Qn are (up to order) the same list

of prime ideals. �
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8. Noetherian Rings.

8.1 Definition. A commutative ring satisfying one and hence all of the equivalent

conditions of the following theorem is called Noetherian.

8.2 Proposition. Let R be a commutative ring. Then the following are equivalent:

(1) Every ideal of R is finitely generated.

(2) Every ascending chain of ideals of R is of finite length.

(3) Every non-empty set of ideals of R has a maximal element.

Proof. (1 ⇒ 2) Follows because the union of a chain of ideals is an ideal and

therefore a finitely generated ideal.

(2⇒ 3) easy.

(3 ⇒ 1) Let I be an ideal of R and S the set of finitely generated ideals

contained in I . S (being non-empty because it contains (0)) has a maximal

element J . Suppose J 6= I and pick i∈ I \J . Then iR+J ⊆ I is finitely generated

and strictly contains J , a contradiction. �

8.3 Easy exercise. If I is a finitely generated ideal, and S any set generating I ,

then S has a finite subset which generates I .

Condition (2) above is called “the ascending chain condition” (ACC) (for

ideals). Similar conditions for objects other than ideals, or for special kinds of

ideals, often play a rôle. For instance, a generalization of Noetherian domains

is given by requiring the ascending chain condition only for divisorial ideals; the

resulting domains are called Mori domains.

8.4 Definition. Let R be a commutative ring, M an R-module. M is called

Noetherian if every R submodule of M is finitely generated.

Since the ideals of a ring R are precisely the R-submodules of R, a ring R is

Noetherian (as a ring) if and only if it is a Noetherian R-module.

8.5 Remark: As in Proposition 8.2, the following are equivalent:

(1) M is a Noetherian R-module

(2) Every ascending chain of R-submodules of M is of finite length.

(3) Every non-empty set of R-submodules of M contains a maximal element.
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8.6 Lemma. Let M be am R-module and L a submodule of M . Then M is

Noetherian if and only if both L and M/L are Noetherian.

Proof. If M is Noetherian, then L is Noetherian, since every submodule of L is s

submodule of M . Also, M/L is Noetherian, since every submodule of M/L is of

the form π(N), where N is a submodule of M and π:M → M/L the canonical

projection, and π(N) is generated by the images under π of a set of generators of

N .

Conversely, suppose L and M/L are Noetherian. Given a submodule N of

M , let a n1, . . . ns be generators of N ∩ L and m1 + L, . . . ,mt + L generators of

(N + L)/L with m1, . . . , mt ∈ N . Then N is generated by n1, . . . ns, m1, . . . , mt .

�

8.7 Proposition. For every Noetherian ring R, every finitely generated R-module

is Noetherian.

Proof. We only need to show that every free R-module of finite rank is Noetherian,

since every R-module generated by n elements is a homomorphic image of the free

R-module of rank n.

Induction on the rank of M : For n = 1, M = R, and R is Noetherian. For

rank(M) = n > 1, M =R⊕L, L a free R-module of rank n− 1. L is Noetherian

by induction hypothesis, M/L = R is Noetherian, and therefore M is Noetherian

by the previous Lemma. �

8.8 Theorem. (Hilbert’s basis theorem) Let R be a Noetherian ring. Then R[x]

is Noetherian.

Proof. Let J 6= (0) be an ideal of R[x]. For n ∈ N, let In be the set of leading

coefficients of polynomials of degree n or less in J and set I =
⋃

n∈N
In . The In

are ideals of R with I0 ⊆ I1 ⊆ I2 ⊆ . . . and therfore I is an ideal of R too. The

fact that both I and all In are finitely generated now implies that J is finitely

generated: let g1, . . . , gm ∈ J be polynomials whose leading coefficients generate I

and let N = max1≤k≤m deg gk . To g1, . . . , gm we add for each n < N a finite set

of elements of J of degree n or less whose leading coefficients generate In . That

the resulting finite set of polynomials generates J is now easily seen by induction

on the degree of an element of J . �

8.9 Corollary. Let R be a Noetherian ring. Then R[x1, . . . , xn] and therefore

every finitely generated R-algebra (as a homomorphic image of a polynomial ring

R[x1, . . . , xn]) is Noetherian.
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8.10 Lemma. Let R be a commutative ring and P an ideal of R that is not

finitely generated and which is maximal with respect to this property. Then P is

prime.

Proof. Suppose ab ∈ P and a /∈ P , b /∈ P . By maximality of P , P + (a) is finitely

generated, by elements p1 + r1a, . . ., pk + rka (with pi ∈ P , ri ∈ R).

Also, (P :a)={r∈R |ra∈P} properly contains P , because P ⊂P+(b)⊆(P :a).

The ideal (P : a) of R is, therefore, finitely generated, by j1, . . . , jh , say.

We claim that p1, . . . , pk, aj1, . . . , ajh (which are in P by constructtion) gen-

erate P .

Let c∈P , then c∈P+(a) and there exist t1, . . . , tk∈R with c=t1p1+. . .+tkpk+

(t1r1+. . .+tkrk)a. If we set d= t1r1+. . .+tkrk , then da=c−(t1p1+. . .+tkpk)∈P
and therefore d ∈ (P : a). Let t1

′, . . . , th
′ ∈ R such that d = t1

′j1 + . . .+ th
′jh .

Then c= t1p1 + . . .+ tkpk + t1
′j1a+ . . .+ th

′jha is an R-linear combination of

p1, . . . , pk, j1a, . . . , jha. We have shown that P is finitely generated, a contradic-

tion. �

8.11 Theorem. (Cohen) Let R be a commutative ring. If every prime ideal of

R is finitley generated, then R is Noetherian.

Proof. The set of non-finitely-generated ideals of a commutative ring clearly sat-

isfies the hypothesis of Zorn’s lemma. Therefore, if this set is non-empty, it has a

maximal element by Zorn’s lemma. Such a maximal element is a prime ideal by

the previous lemma. Therefore, every non-Noetherian ring has a prime ideal that

is not finitely generated. �
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9. Primary decompostion of ideals in Noetherian rings

9.1 Definition. An ideal I 6= R of a commutative ring R is called irreducible if

there do not exist ideals A,B of R, each properly containing I , such that I=A∩B .

Note that prime ideals are certainly irreducible: Suppose P = A ∩ B . If P is

prime, then AB ⊆ A ∩B ⊆ P implies A ⊆ P or B ⊆ P .

It is easy to see that I 6= R being irreducible is equivalent to: there do not

exist finitely many ideals Ai with Ai ⊃ I and I = A1 ∩ . . . ∩ An . It is however

possible for an irreducible ideal to be the intersection of an infinite collection of

ideals each properly containing it (just consider (0) in Z).

9.2 Lemma. Let R be a Noetherian ring. Then every proper ideal of R can be

expressed as a finite intersection of irreducible ideals.

Proof. Let S be the set of proper ideals of R that are not finite intersections of

irreducible ideals. If S 6= then S contains a maximal ideal I . As I is certainly not

irreducible, there exist ideals A, B , each properly containing I with I = A ∩ B .

By maximalty of I , A,B /∈ S . Therfore A and B are each expressible as a finite

intersection of irreducible ideals, and so is I , a contradiction. �

9.3 Lemma. Let R be a Noetherian ring. Then every irreducible ideal of R is

primary.

Proof. Let I be irreducible and ab ∈R. To show: b ∈ I or there exists n ∈ N with

an ∈ I .
Consider the ascending chain of ideals of R:

I ⊆ (I :R a) ⊆ (I :R a2) ⊆ . . . ⊆ (I :R an) ⊆ (I :R an+1) ⊆ . . . ,

Let N ∈ N be such that (I :R an) = (I :R aN ) for all n ≥ N . We will show

that I = (I + (b)) ∩ (I + (aN )). Once this is established, we are done, because

irreducibility of I then implies either I+(b) = I (and hence b∈ I ) or I = I+(aN )

(and hence aN ∈ I ).
Clearly, I ⊆ (I + (b)) ∩ (I + (aN )). Now let r ∈ (I + (b)) ∩ (I + (aN )). Then

r = i + sb = j + taN for some i, j ∈ I and s, t ∈ R. Multiplying by a we get

ai− aj + sab= taN+1 . The left hand side is in I , therefore t ∈ (I : aN+1). By the

choice of N , (I : aN=1) = (I : aN ), and so taN ∈ I . This implies r = j + taN ∈ I .
�
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9.4 Corollary. Let R be a Noetherian ring. Then every proper ideal of R can

be expressed as a finite intersection of primary ideals.

9.5 Definition. Let I be an ideal. A finite list of primary ideals Q1, . . . , Qm such

that I = Q1 ∩ . . . ∩Qm is called a primary decomposition of I .

A primary decomposition of I is called reduced if

(1) there doesn’t exist j such that Qj ⊇
⋂

i6=j Qi and

(2)
√
Qi 6=

√

Qj for i 6= j .

9.6 Lemma. If Q1 and Q2 are P -primary ideals then Q1∩Q2 is again P -primary.

Proof. Exercise. �

9.7 Corollary. Any ideal that has a primary decomposition has a reduced primary

decomposition.

Proof. Given a primary decomposition I =Q1 ∩ . . .∩Qm we can create a reduced

primary decomposition by grouping together primary ideals with the same radical

and taking their intersection (applying 9.6) and then deleting one by one those

primary ideals that contain the intersection of the remaining ones (as long as any

such redundant primary ideals are left). Since our list of Qi is finite, this process

terminates with a reduced decomposition. �

9.8 Remark: By 9.2, 9.3 and 9.7, every proper ideal in a Noetherian ring has

a reduced primary decomposition. This is in general no longer a decomposition

into irreducible ideals. (We have taken the intersections of irreducible components

sharing the same radical.)

9.9 Lemma. Let Q be a P -primary ideal of R, and r ∈ R. The following ideal

quotients are taken over R.

(1) If r ∈ Q then (Q : r) = R.

(2) If r /∈ Q then (Q : r) is P -primary.

(3) If r /∈ P then (Q : r) = Q.

Proof. Easy. �

9.10 Lemma. Suppose I = Q1 ∩ . . . ∩ Qm is a reduced primary decompostion

with
√
Qi = Pi for 1 ≤ i ≤m.

For any prime ideal P of R, the following are equivalent

(1) P = Pi for some i.
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(2) There exists r ∈ R such that (I : r) is P -primary.

(3) There exists r ∈ R such that
√

(I : r) = P .

Furthermore, if R is Noetherian, then the following is equivalent to the previous

three conditions:

(4) There exists r ∈ R such that (I : r) = P .

Proof. (1⇒ 2) Suppose P = Pi and let ai ∈ (
⋂

j 6=iQi) \Qi (which exists because

the primary decomposition is reduced). Then

(I : ai) =





m
⋂

j=1

Qj : aj



 =

m
⋂

j=1

(Qj : aj) = (Qi : ai),

which is Pi -primary, i.e. P -primary, by 9.9.

(2⇒ 3) is trivial;

(3⇒ 1)

P =
√

(I : r) =
m
⋂

j=1

√

(Qj : r) =
⋂

j
r/∈Qj

Pj

P is equal to a finite intersection of prime ideals (necessarily there exists some j

such that r /∈ Qj , otherwise P = R), therefore P coincides with one of the Pj .

(4 ⇒ 2) is trivial; for Noetherian R we show (2 ⇒ 4): The set of P -primary

ideals of the form (I : r) contains a maximal element (I : s). We claim that

(I : s) = P . It suffices to show that (I : s) is prime. Let ab ∈ (I : s), and suppose

a, b /∈ (I : s). Then (I : s) is properly contained in (I : as) (witness b), and (I : as)

is a proper ideal of R (witness 1).

The radical of (I : as) is P : if cn ∈ (I : as) then acn ∈ (I : s) while a /∈ (I : s)

implies cn ∈ P , and further c ∈ P . Therefore
√

(I : as) ⊆ P and the reverse

inclusion follows from (I : s) ⊆ (I : as).

Let cd ∈ (I : as), c /∈ (I : as). Then cda ∈ (I : s), while ca /∈ (I : s) implies

d ∈
√

(I : s) = P =
√

(I : as) . Therefore (I : as) is P -primary, a contradiction

to the maximality of (I : s). �

9.11 Theorem. Suppose I =Q1 ∩ . . .∩Qm is a reduced primary decompostion,

and Pi =
√
Qi , for 1 ≤ i ≤m. Then for every reduced primary decomposition of

I , the same set of prime ideals {P1, . . . , Pm} occurs as the set of radicals of the

primary components.

Proof. By 9.10, the criterion for P to occur among the radicals of the Qi does not

depend on the primary decomposition but only on I . �
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9.12 Theorem. Suppose I =Q1 ∩ . . .∩Qm is a reduced primary decompostion,

and Pi =
√
Qi , where P1, . . . , Pk are the isolated primes and Pk+1, . . . , Pm

the embedded primes of I . Given any other reduced primary decompostion

I = Q′
1 ∩ . . . ∩Q′

m with Pi =
√

Q′
i , then Q′

i = Qi for 1 ≤ i ≤ k.

Proof. Given an isolated prime Pi , let r∈ (
⋂

j 6=i Pj)\Pi . Such an r exists, for, if Pi

contained
⋂

j 6=i Pj , it would contain some Pj with j 6= i, contrary to assumption.

Let n ∈ N such that rn ∈ ⋂

j 6=iQj as well as rn ∈⋂

j 6=iQ
′
j . By 9.9,

(I : rn) =
m
⋂

j=1

(Qj : r
n) = (Qi : r

n) = Qi

and by the same token, (I : rn) = Q′
i . �
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10. Associated ideals

∗ ∗ ∗ Zero-divisors and associated primes ∗ ∗ ∗

The following theorem holds for (not necessarily Noetherian) commutative

rings:

10.1 Theorem. (Prime Avoidance) Let R be a commutative ring and P1, . . . , Pn

ideals of R such that at most two of the Pi are not prime. Let I be a ring (possibly

without a unit element) such that I ⊆ ⋃

1≤i≤n Pi . Then there exists an i with

I ⊆ Pi .

Proof. Induction on n. Let n=2, I ⊆P1∪P2 , and suppose there exists a1 ∈ I \P2

and a2 ∈ I \P1 . Then a1+a2 is in I , but neither in P1 nor in P2 , a contradiction.

Now let n > 2, I ⊆ ⋃

1≤i≤n Pi , but for every 1 ≤ k ≤ n, I is not contained in the

union of the Pi with i 6= k (otherwise we are done by induction hypothesis). For

every k pick ak in I and not in the union of the Pi with i 6= k. Then ak ∈ Pk . As

n>2, at least one of the Pi is prime, say P1 is prime, and we set b=a1+a2 ·. . .·an .
Then b is in I , but not in any Pi , a contradiction �

10.2 Definition. Let M be an R-module.

(i) For m ∈M , the annihilator of m is AnnR(m) := {r ∈ R | rm = 0}.
(ii) r ∈ R is a zero-divisor of M if rm = 0 for some non-zero m ∈M .

(iii) The set of zero-divisors of M is denoted by Z(M), in other words,

Z(M) =
⋃

m∈M
m6=0

AnnR(m).

(iv) A prime ideal P of R is called an associated prime ideal of M if

P = AnnR(m) for some non-zero m ∈M .

10.3 Lemma. Let M be a Noetherian R-module and N an R-submodule

generated by the set S . Then N is generated by a finite subset of S .

Proof. Consider the (clearly non-empty) set of submodules of N generated by

finite subsets of S . This set of submodules has a maximal element N ′ , generated

by si1 , . . . , sin ∈S . For any s∈S , the submodule of N generated by s, si1 , . . . , sin
contains N ′ and is therefore equal to N ′ by maximality of N ′ . We see that every

s ∈ S is already in N ′ and therefore N = N ′ . �
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10.4 Remark: For any commutative ring R and R-module M , the set R \Z(M)

of non-zerodivisors of M is a saturated multiplicative set. Therfore, by 5.3, its

complement, Z(M), is a union of prime ideals. In the Noetherian case, we will

see that only finitely many prime ideals are needed.

10.5 Proposition (Prime and maximal annihilators). Let R be a commutative

ring and M 6= 0 an R-module.

(i) Every maximal annihilator of a non-zero element is prime.

(ii) If R is Noetherian then every annihilator of a non-zero element is contained

in a maximal one.

(iii) If M is a Noetherian module then there are only finitely many maximal

annihilators of non-zero elements of M .

(iv) If R is a Noetherian ring and M a Noetherian module, then Z(M) is a

finite union of prime ideals, each of which is an annihilator of a non-zero

element of M :

Z(M) = AnnR(m1) ∪ . . . ∪ AnnR(mn), AnnR(mi) prime, for 1 ≤ i ≤ n

Proof.

(i) Let I =AnnR(m) be maximal among annihilators of non-zero elements. I 6=R

since M is unitary and non-zero. Suppose ab ∈ I and b /∈ I . Then bm 6= 0 and

a ∈ AnnR(bm). Now AnnR(m) ⊆ AnnR(bm) implies, by maximality of I , that

AnnR(m) = AnnR(bm) and therefore a ∈ I .
(ii) For I = AnnR(m), consider the set S of annihilators of non-zero elements

containing I (which is non-empty since I ∈ S ). Since R is Noetherian S has a

maximal element which is clearly maximal among annihilators of non-zero elements

and contains I .

(iii) Suppose Pλ =AnnR(mλ), λ ∈ Λ are all the maximal annihilators of non-zero

elements of M . Consider the submodule N of M generated by the mλ , λ ∈
Λ. There exists a finite subset mλ1

, . . . , mλn
of these generators that already

generate N . For any mµ with µ ∈ Λ there exist r1, . . . , rn ∈ R, such that

mµ = r1mλ1
,+ . . . + rnmλn

, which implies Pλ1
. . . Pλn

⊆ AnnR(mµ). Since

AnnR(mµ) = Pµ is prime we have Pλi
⊆ Pµ for some 1 ≤ i ≤ n. By maximality

of Pλi
it follows that Pµ = Pλi

. Therfore every AnnR(mµ), µ ∈ Λ is one of

Pλ1
, . . . , Pλn

.

(iv) follows from (i)–(iii). �

10.6 Theorem. Let R be a Noetherian ring and M a Noetherian R-module. If
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I is a subring (possibly without a unit) of R contained in Z(M) then there exists

a non-zero element m ∈M with Im = {0}.

Proof. By the previous lemma, Z(M) is a union of finitely many prime ideals of

the form AnnR(m). By prime avoidance 10.1, I is contained in a single AnnR(m).

�

10.7 Corollary. (Universal zero divisor) Let R be a Noetherian ring, and I

an ideal (or non-unitary subring) consisting entirely of zero-divisiors of R. Then

there exists r ∈ R such that ir = 0 for all i ∈ I .

∗ ∗ ∗ Associated primes ∗ ∗ ∗

10.8 Definition. If M is an R-module, an associated prime of M is a prime

ideal P of R that is the annihilator of an element of M , P = Ann(m). The set

of all associated primes of M is denoted by AssR(M), or Ass(M), when R is

understood.

10.9 Definition. The associated primes of an ideal I of an integral domain R are

the associated primes of the R-module R/I .

The apparent ambiguity of the definition of the associated primes of an ideal

I is not a problem, as the only associated prime of the R-module I is (0) (in an

intergal domain, Ann(r) = 0 for every non-zero r ∈R), so this is a concept we can

disregard.

Let R be an integral domain with quotient field K and k ∈ K . Consider the

“conductor ideal” (R:R k) = {r ∈ R | rk ∈ R}. Note that (R:R k) = R iff k ∈ R.

Also, if k is written as a fraction of elements of R, k= a
b then (R:R k) = (Rb:R a),

which is the annihilator of (the residue class of) a in R/Rb. Therefore conductor

ideals (of elements of the quotient field) that are prime are exactly the associated

primes of non-zero principal ideals of R.
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11. Motivation from algebraic geometry

Let K be a field and n ∈ N. We are interested in subsets of the n-dimensional

K -vectorspace that are characterized by a system of polynomial equations in n

variables with coefficients on K .

To every subset S of the polynomial ring K[x1, . . . , xn] we associate the set of

its zeros

Z(S) = {(a1, . . . , an) ∈Kn | ∀f ∈ S f(a1, . . . , an) = 0}

and to every subset A of the n-dimensional K -space the set of polynomials that

are zero on A

I(A) = {f ∈K[x1, . . . , xn] | ∀(a1, . . . , an) ∈ A f(a1, . . . , an) = 0}.

We can consider Z as a function whose arguments are subsets of K[x1, . . . , xn]

and whose values are subsets of Kn (and vice versa for I ), or, without losing

any information, we can restrict the arguments of Z and the values of I to ideals

of K[x1, . . . , xn]. This is so because I(A) is an ideal of K[x1, . . . , xn] for every

A ⊆ Kn , and Z(S) = Z((S)), where (S) is the ideal of K[x1, . . . , xn] generated

by S , for every set of polynomials S ⊆K[x1, . . . , xn]. (Exercise: check this.)

Subsets of Kn of the form A=Z(J) for some ideal J EK[x1, . . . , xn] are called

algebraic sets.

11.1 Remark: The more obvious properties of I and Z : For all A,B⊆K[x1, . . . , xn],

and all C,D ⊆Kn

(i) A ⊆ B =⇒ Z(A) ⊇ Z(B) and C ⊆ D =⇒ I(C) ⊇ I(D)

(ii) A ⊆ I(Z(A)) and C ⊆ Z(I(C))

(iii) Z(A) = Z(I(Z(A))) and I(C) = I(Z(I(C)))

(iv) There is a bijective correspondence between ideals of K[x1, . . . , xn] of the

form J = I(S) (for some S ⊆Kn) and subsets of Kn of the form A=Z(L)

(for some ideal L of K[x1, . . . , xn]) given by the restrictions of I and Z to

arguments of this form.

(i) and (ii) are easy to see. By (i) and (ii), I and Z constitute a Galois cor-

respondence between subsets of Kn and ideals of K[x1, . . . , xn] (each ordered by

set-theoretic inclusion). (iii) and (iv) then follow from the Galois correspondence.
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11.2 Definition. A Galois Correspondence between two partially ordered sets

(X ,≤) and (Y ,≤) consists of functions f :X → Y and g:Y → X satisfying the

following conditions for all A,B ∈ X and all C,D ∈ Y :

(i) A ≤ B =⇒ f(A) ≥ f(B) and C ≤ D =⇒ g(C) ≥ g(D)

(ii) A ≤ f(g(A)) and C ≤ g(f(C))

11.3 Remark: The conditions defining a Galois correspondence are symmetric in

f and g . To reflect this symmetry and to allow us to express two statements in

one, we can write both f and g in prime notation: for A ∈ X , A′ := f(A) and for

A ∈ Y , A′ := g(A). Conditions (i) and (ii) become

(i) A ≤ B =⇒ A′ ≥ B′

(ii) A ≤ A′′

Given a Galois correspondence, we call an element A of X or Y closed with

respect to the Galois correspondence, if it satisfies A′′ = A.

It is easy to see that conditions (i) and (ii) above imply

(iii) A′ = A′′′ ,

which in turn implies

(iv) The subset of elements A in X (or Y ) satisfying A = A′′ is exactly the

subset of elements of the form B′ for some B ∈ Y (or X , respectively).

(v) There is a bijective correspondence, given by A 7→ A′ (in either direction)

between the set of closed elements in X and the set of closed elements in

Y .

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Like in other situations in mathematics, the nontrivial facts connected with a

Galois correspondence between two sets consist of characterizations of the closed

elements in either set from a different point of view, independent of the Galois

structure.

The following Lemma shows that there is a topology on Kn whose closed sets

are exactly the subsets of Kn of the form Z(J) (for some ideal J of K[x1, . . . , xn]).

11.4 Lemma.

1) If A, B ⊆ Kn are algebraic sets then so is A ∪ B . Indeed, for all sets

S, T ⊆ K[x1, . . . , xn],

Z(S) ∪ Z(T ) = Z(ST ),

where ST = {st | s ∈ S, t ∈ T}.
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2) If Aλ is an algebraic set for all λ ∈ Λ (an arbitrary index set) then
⋂

λ∈ΛAλ

is an algebraic set. Indeed,
⋂

λ∈Λ

Z(Sλ) = Z(
⋃

λ∈Λ

Sλ).

3) ∅ and Kn are algebraic sets: ∅ = Z(1) = Z(K[x1, . . . , xn]) and Kn = Z(0).

Proof. Ad 1) Clearly, Z(S)∪Z(T )⊆Z(ST ). For the reverse inclusion, we consider
a point a ∈ Z(ST ) that is not in Z(S) and show that it is in Z(T ). Fix s0 ∈ S

with s0(a) 6= 0. For all t ∈ T , 0 = (s0 · t)(a) = s0(a)t(a), therefore for all t ∈ T

t(a) = 0, i.e., a ∈ Z(T ).
Ad 2)

⋂

λ∈Λ Z(Sλ) = {a ∈ Kn | ∀λ ∈ Λ ∀f ∈ Sλf(a) = 0} = Z(
⋃

λ∈Λ Sλ). �

11.5 Remark:

1) If I and J are ideals of a ring R then IJ is defined as

IJ = {i1j1 + . . .+ ikjm |m ∈ N, ik ∈ I, jk ∈ J},

which is the ideal generated by {ij | i ∈ I, j ∈ J}.
With this definition of IJ , we have, for ideals I, J of K[x1, . . . , xn]:

Z(I ∩ J) = Z(IJ) = Z(I) ∪ Z(J).

Proof: {ij | i∈ I, j∈J}⊆ IJ⊆ I∩J implies Z(I∩J)⊆Z(IJ)⊆Z({ij | i∈ I, j∈J});
Z({ij | i∈ I, j ∈J})=Z(I)∪Z(J) holds by lemma 11.4, and Z(I)∪Z(J)⊆Z(I∩J)
for purely logical reasons.

2) If Sλ is a subset of Kn for all λ ∈ Λ then

I(
⋃

λ∈Λ

Sλ) =
⋂

λ∈Λ

I(Sλ).

In particular, for any set A ⊆Kn ,

I(A) =
⋂

a∈A

I(a).

11.6 Definition. Let R be a commutative ring and I an ideal of R. The radical

of I is defined by √
I = {r ∈ R | ∃n ∈ N rn ∈ I}.

Note that I ⊆
√
I for every ideal I and that

√
I =R if and only if I =R. It

is easy to see that
√
Q = Q whenever Q is a prime ideal or, more generally, an

intersection of prime ideals. (We shall see in chapter 4 that
√
I is the intersection

of all prime ideals containing I .)
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11.7 Theorem. (Hilbert’s Nullstellensatz) Let K be an algebraically closed field

and f1, . . . , fm, g ∈K[x1, . . . , xn] such that g(a) = 0 for all a ∈Z(f1, . . . , fm) then

g ∈
√

(f1, . . . , fm) .

Proof. Will be proved in chapter 3. �

The importance of Hilbert’s Nullstellensatz lies in the following corollary.

11.8 Corollary. Let J be an ideal of K[x1, . . . , xn], where K is an algebraically

closed field. Then

I(Z(J)) =
√
J .

Proof. The Nullstellensatz says I(Z(J)) ⊆
√
J for finitely generated J , and

from Hilbert’s basis theorem we know that every ideal of K[x1, . . . , xn] is finitely

generated. The reverse inclusion is easy; it holds even if K is not algebraically

closed: if g∈
√
J then for some m∈N gm∈J and therefore gm(a)=g(a) . . . g(a)=0

for every a ∈ Z(J). Since K is an integral domain, g(a) = 0 follows. �

11.9 Lemma. (maximal ideals) Let K be a field, a = (a1, . . . , an) ∈ Kn , and

define Mā to be the ideal of K[x1, . . . , xn] generated by x1−a1, . . . , xn−an . Then
Mā = I({a}) and Mā is a maximal ideal of K[x1, . . . , xn].

Proof. The substitution homomorphism ϕ:K[x1, . . . , xn] → K[x1, . . . , xn] with

ϕ(xi) = xi − ai and ϕ(k) = k for k ∈ K is an automorphism of K[x1, . . . , xn].

Therefore the residue class ring of Mā is isomorphic to the residue class ring of

(x1, . . . , xn), which is K . As K is a field, Mā is a maximal ideal. Therefore

Mā ⊆ I({a}) ⊂K[x1, . . . , xn] implies Mā = I({a}). �

With this in mind,
√
J = I(Z(J)) becomes

√
J =

⋂

a∈Z(J)

I(a) =
⋂

J⊆I(a)

I(a) =
⋂

J⊆Mā

Mā,

the statement that the radical of every ideal of K[x1, . . . , xn] (K algebraically

closed) is an intersection of ideals of the form Mā . (Since this also holds for

maximal ideals, every maximal ideal is of the form Mā .) Therefore, one way to

see the Nullstellensatz is:

11.10 Theorem. (Variant of Hilbert’s Nullstellensatz) Let K be an algebraically

closed field.

(1) (“K[x1, . . . , xn] is a Hilbert ring.”) In K[x1, . . . , xn], the radical of every

ideal is an intersection of maximal ideals.

(2) (“Weak Nullstellensatz”) Every maximal ideal of K[x1, . . . , xn] is of the

form Mā , a ∈Kn .
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

11.11 Definition. A subset Y of a topological space X is called irreducible if

Y 6= ∅ and, whenever Y ⊆B∪C , where B,C are closed sets, it follows that A⊆B

or A ⊆ C .

For a closed set A, this is equivalent to: A 6= ∅; and, whenever A=B∪C with

B,C closed, it follows that A = B or A = C .

11.12 Remark: For a subset S of Kn with Zariski topology, S is irreducible

if S 6= ∅ and, whenever S ⊆ Z(J) ∪ Z(L) for some J, LEK[x1, . . . , xn], it follows

that S ⊆ Z(J) or S ⊆ Z(L).

For an algebraic subset A = Z(I) of Kn this means: A 6= ∅ and, whenever

A = Z(J) ∪ Z(L), it follows that A = Z(J) or A = Z(L).

11.13 Proposition. Let A ⊆Kn . Then A is irreducible iff I(A) is a prime ideal.

Proof. (⇒) Suppose A is irreducible and JL⊆ I(A) for some J, LEK[x1, . . . , xn];

to show J ⊆ I(A) or L ⊆ I(A).

Z(J) ∪ Z(L) = Z(JL) ⊇ Z(I(A)) ⊇ A

By irreducibility of A we get A⊆Z(J) or A⊆Z(L), say the former, which implies

I(A) ⊇ I(Z(J)) ⊇ J .

(⇐) Suppose I(A) is prime and A ⊆ Z(J) ∪ Z(L); to show A ⊆ Z(J) or

A ⊆ Z(L).

I(A) ⊇ I(Z(J) ∪ Z(L)) = I(Z(J)) ∩ I(Z(L)) ⊇ I(Z(J))I(Z(L))

I(A) being prime we have I(Z(J)) ⊆ I(A) or I(Z(L)) ⊆ I(A), say the former.

Then A ⊆ Z(I(A)) ⊆ Z(I(Z(J))) = Z(J). �

11.14 Corollary. For I EK[x1, . . . , xn], Z(I) is irreducible iff
√
I is prime.

The weak Nullstellensatz establishes a bijection between the points of Kn and

the maximal ideals of K[x1, . . . , xn] (when K is algebraically closed). Thus the

topology on Kn (whose closed sets are the algebraic sets) translates to a topology

on MaxSpec(K[x1, . . . , xn]) (the set of maximal ideals of K[x1, . . . , xn]). A set S

of maximal ideals is closed if and only if there exists an ideal I of K[x1, . . . , xn]

such that S is exactly the set of maximal ideals containing I .

This topology can be generalized to the spectrum of an arbitrary commutative

ring R.
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11.15 Definition. Let R be a commutative ring and Spec(R) the set of prime

ideals of R. For every ideal I of R we define a set of prime ideals V (I) = {P ∈
Spec(R) | I ⊆ P}.

Zariski topology on Spec(R) is defined by the convention: a set S of prime

ideals of R is closed if and only if there exists an ideal I of R such that S = V (I).

To show that this is a valid definition of a topology, we have to check:

11.16 Lemma.

1) Finite unions of closed sets are closed. Indeed, V (I) ∪ V (J) = V (IJ).

2) Arbitrary intersections of closed sets are closed. Indeed,

⋂

λ∈Λ

V (Iλ) = V ((
⋃

λ∈Λ

Iλ)).

3) ∅ and Spec(R) are closed: ∅ = V (R) and Spec(R) = V ((0)).

We have a Galois connection between ideals of R on one hand and sets of prime

ideals of R on the other hand given by I 7→ V (I) for I ER and S 7→ ⋂

P∈S P for

S⊆Spec(R), which gives a bijection between radical ideals of R and Zariski-closed

sets of prime ideals.

It is clear that the Zariski-closure of a set S of prime ideals consists of all prime

ideals containing
⋂

P∈S P .

11.17 Definition. A topological space X is called Noetherian, if it satisfies the

descending chain condition on closed sets, i.e., whenever A1 ⊇ A2 ⊇ . . .Am ⊇
Am+1 ⊇ . . . with Ai closed for all i, then there exists N ∈N such that for all i>N

Ai = AN .

11.18 Remark: It is easy to see that X is Noetherian if and only if every set A
of closed sets has a minimal element with respect to inclusion.

If R is a Noetherian ring then Spec(R) with Zariski topology is easily seen to

be a Noetherian topological space.

11.19 Theorem. Let X be a Noetherian topological space. Then every closed

set A is a finite union of irreducible closed sets A = A1 ∪ . . . ∪ Am with Ai ⊆/Aj

for i 6= j and these sets Ai are unique.

Proof. Existence: Suppose the set A of all closed sets that are not a finite union

of closed irreducible sets is nonempty. Then it contains a mimimal A. This A is

not irreducible, so there exist B,C closed with A=B ∪C and A 6=B , A 6=C . By
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minimality of A ∈A, B and C are not in A and are each representable as a finite

union of irreducible closed sets. But then, so is A, a contradiction. Once a closed

set is represented as finite union of irreducible closed Ai we can delete those Ai

that are contained in some Aj for j 6= i.

Uniqueness: Suppose A1 ∪ . . . ∪ Am = A′
1cup . . . ∪ A′

n . For 1 ≤ i ≤ m

Ai ⊆ A′
1cup . . . ∪ A′

n . As Ai is irreducible, there exists j with Ai ⊆ A′
j . By

the same token, there exists k, such that A′
j ⊆ Ak . Then Ai ⊆ Ak . Therefore

i = k and Ai = A′
j . By setting ϕ(i) = j with Ai = A′

j we get an injective map

ϕ: {1, . . .m}→ {1, . . . n}. ϕ is also surjective: take k ∈ {1, . . . n}. Then, as above,
there exists i with A′

k = Ai , and also Ai = A′
ϕ(i) , so A

′
k = A′

ϕ(i) , which implies

k = ϕ(i). �
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12. Hilbert rings and the Nullstellensatz

∗ ∗ ∗ Goldman-Krull proof of Hilbert’s Nullstellensatz ∗ ∗ ∗

If P is an ideal of a commutative ring R, we know that

P is prime ⇐⇒ R/P is an integral domain

P is maximal ⇐⇒ R/P is a field.

We are now going to see a similar characterization for a concept that falls in

between prime and maximal.

P is a prime ideal that

is not an intersection of

strictly larger prime ideals.

⇐⇒
R/P is an integral domain whose

quotient field is generated (as a

ring over R/P ) by a single element.

12.1 Definition. An ideal P is a G-ideal (or Goldman-ideal) if P is a prime

ideal which is not an intersection of prime ideals strictly containing P .

Note that P is a G-ideal iff R/P is an integral domain in which the intersection

of all non-zero prime ideals is not (0).

12.2 Definition. A domain D with quotient field K is a G-domain if K is

generated by a single element as a ring over D, i.e., ∃z ∈ K such that K =D[z].

Some equivalent characterizations of G-domains:

12.3 Lemma. Let D be a domain and K its quotient field. The following are

equivalent:

(1) There exists u ∈ D \ {0} such that K =D[u−1].

(2) K is generated by a single element as a ring over D.

(3) K is finitely generated as a ring over D.

Proof. (3⇒ 1) If K =D[a1

b1
, . . . , an

bn
] and u = b1 · . . . · bn then K = D[u−1]. �

12.4 Lemma. Let D be a domain, K its quotient field, and 0 6= u ∈ D. Then

K =D[u−1] iff u is in the intersection of all prime ideals P 6= (0) of D.

Proof. Suppose K =D[u−1] and let P be a non-zero prime ideal. Pick b∈P \{0}.
Then b−1 = cu−n for some c ∈D and n ∈ N. Now bc = un , therefore un ∈ P and

finally u ∈ P .

Conversely, suppose u ∈ P for every prime ideal P 6= (0). Let 0 6= b ∈D. Then

u ∈
√
Rb , meaning there exists n ∈ N with un = cb for some c ∈D. Rewritten as

b−1 = cu−n this shows b−1 ∈D[u−1]. As b was arbitrary, K =D[u−1]. �
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As a consequence of the previous two lemmata:

12.5 Theorem. Let D be a domain. The intersection of all non-zero prime

ideals of D is not (0) iff the quotient field of D is generated by a single element

as a ring over D.

Applying this to residue class rings we get:

12.6 Corollary. Let P ER. Then P is a G-ideal iff R/P is a G-domain.

Note that a commutative ring R is a G-domain if and only if (0) is a G-ideal

of R.

12.7 Lemma. Let I be an ideal in a commutative ring R. Then

√
I =

⋂

P G-ideal
I ⊆ P

P.

Proof. Clearly,
√
I is contained in every prime ideal containing I . Conversely, if

u /∈
√
I then there exists a G-ideal P containing I with u /∈ P : As in the proof of√

I =
⋂

I⊆P prime P (5.9), let P be maximal among the ideals containing I and

disjoint with S = {un | n ∈ N}. Then P is prime. Also, P is a G-ideal, because

every prime ideal strictly containing P intersects S and therefore contains u, but

u /∈ P . �

12.8 Lemma and Definition. Let R be a commutative ring. Then the following

are equivalent

1) Every G-ideal of R is maximal.

2) For every ideal I of R,
√
I is an intersection of maximal ideals.

A commutative ring satisfying one (and hence both) of the above conditions is

called Hilbert ring (or Jacobson ring).

Proof. (2 ⇒ 1) Let P be a G-ideal. Then
√
P = P , because P is prime. By 2),

P is an intersection of maximal ideals, but, as a G-ideal, P is no intersection of

prime ideals strictly containing P , therefore P must be maximal. �

12.9 Easy exercise. Every homomorphic image of a Hilbert ring is a Hilbert ring.
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12.10 Lemma. Let R be a commutative ring. Then R[x] is not a G-domain.

Proof. If R is not a domain, then R[x] is not a domain, let alone a G-domain.

Now let R be a domain with quotient field K . We must show that the intersection

of all non-zero prime ideals of R[x] is (0).

Since P ∩R[x] is a non-zero prime ideal of R[x] for every non-zero prime ideal

P of K[x], it suffices to show that the intersection of all non-zero prime ideals of

K[x] is (0).

This is the case because there are infinitely many monic irreducible polynomials

in K[x]: If there were only finitely many, p1 = x, p2, . . . , pn , then p1 · . . . · pn + 1

(which is not a unit because its degree is not zero), would not be divisible by any

monic irreducible polynomial, a contradiction to K[x] being a unique factorization

domain. �

12.11 Corollary. Let K be a field. Then K[x] is a Hilbert ring.

Proof. K[x] is a principal ideal domain, so the only non-maximal prime ideal is

(0), which is not a G-ideal by 12.10. Therefore every G-ideal of K[x] is maximal.

�

12.12 Lemma. Let S ⊆ T be domains, T = S[t] with t algebraic over S . Then

T is a G-domain if and only if S is a G-domain.

Proof. Let K and L be the quotient fields of S and T respectively. Then L=K[t]

is algebraic over K (and hence over S). Suppose T is a G-domain. Then

L = T [c−1] = S[t, c−1] for some c ∈ T . Both c−1 and t are algebraic over S .

Let a and b be the leading coefficients of non-zero polynomials f and g in S[x]

with f(c−1) = 0 and g(t) = 0 and let S̃ = S[a−1, b−1]. Then c−1 and t are integral

over S̃ . Hence L is integral over S̃ , which makes S̃ a field (4.21). Clearly, S̃ =K .

Therefore K is finitely generated as a ring over S , and S is a G-domain.

The converse is easy. If S is a G-domain then K = S[s−1] for some s ∈ S and

the quotient field of T = S[t] (with t algebraic over S) is K(t) =K[t] = S[s−1, t] =

T [s−1]. �

12.13 Lemma. Let R be a commutative ring. If Q is a G-ideal of R[x] then

P = Q ∩R is a G-ideal of R.

Proof. Let Q be a G-ideal of R[x] and P = Q ∩ R. Then Q contains P [x]

and this containment is strict, because R[x]/Q is a G-domain by hypothesis and

R[x]/P [x] ≃ (R/P )[x] is not a G-domain by Lemma 12.10.
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Let S = R/P and T = R[x]/Q. We know that T is a G-domain and want to

show that S is a G-domain.

S is contained in T via r+P 7→ r+Q, which is injective, because P =Q∩R.

Also, T = S[t] for t = x+Q.

We show that t is algebraic over S : Clearly, t=x+Q∈T is a root of f for any

f ∈Q, and there exists some f ∈Q which is not the zero polynomial in (R/P )[x],

because Q%PR[x]. We can now apply Lemma 12.12. �

12.14 Lemma. Let R be a commutative ring and P a G-ideal of R. Then there

exists a maximal ideal M of R[x] with M ∩R = P .

Proof. Let S =R/P and K the quotient field of S . As S is a G-domain, K = S[b]

for some b ∈ K . Let π:S[x] → S[b] be the substitution homomorphism with

π(x) = b, π
∣

∣

S
= idS . Since the image of π , S[b], is a field, the Ker(π) = M is a

maximal ideal of S[x], and clearly Ker(π) ∩ S = (0).

Now S[x] = (R/P )[x] ≃ R[x]/P [x], and every maximal ideal M of R[x]/P [x]

corresponds to a maximal ideal Q of R[x] containing P [x] (the inverse image of M

under the canonical projection of R[x] onto (R/P )[x], and M ∩S = (0) translates

to Q ∩R = P . �

Lemma 12.14 and Lemma 12.13 combined yield:

12.15 Theorem. Let R be a commutative ring and P an ideal of R. The

following are equivalent:

(1) P is a G-ideal of R.

(2) There exists a maximal ideal M of R[x] with M ∩R = P .

(3) There exists a G-ideal Q of R[x] with Q ∩R = P .

12.16 Proposition. Let R be a commutative ring.

(1) R[x] is a Hilbert ring if and only if R is a Hilbert ring.

(2) If R is a Hilbert ring, then every maximal ideal Q of R[x] is generated by

P =Q∩R together with some f ∈R[x] representing an irreducible polynomial

in (R/P )[x].

Proof. Suppose R is a Hilbert ring, Q a G-ideal of R[x], and P = Q ∩R.

P = Q ∩ R is a G-ideal of R by 12.13, and hence maximal by hypothesis.

Q is the inverse image of some G-ideal Q̄ of R[x]/PR[x] ≃ (R/P )[x] under the

canonical projection π : R[x] → R[x]/PR[x]. As (R/P )[x] is the polynomial ring

over a field, Q̄ is maximal by 12.11, and therefore Q is a maximal ideal of R[x].
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Furthermore, Q̄ is generated by a single irreducible polynomial in f̄ ∈(R/P )[x],

so Q is generated by P and f , a representative in R[x] of f̄ .

We have shown (2), and the “if” direction of (1). The “only if” direction of (1)

is easy: R is a homomorphic image of R[x] and the Hilbert ring property clearly

carries over to homomorphic images. �

12.17 Theorem.

(1) Let K be a field and n ∈ N. Then K[x1, . . . , xn] is a Hilbert ring.

(2) Let K be an algebraically closed field and n ∈ N. Then Every maximal ideal

of K[x1, . . . , xn] is of the form (x1−a1, . . . , xn−an), for some a1, . . . , an ∈K .

Proof. (1) follows from 12.16 by induction. (Note that a field is trivially a Hilbert

ring: every prime ideal is maximal.)

Similarly, we show (2) by induction, using 12.16: n = 1 : if K is algebraically

closed, every maximal ideal of K[x] is generated by a monic linear polynomial.

Now let M be a maximal ideal of K[x1, . . . , xn] and P =M ∩K[x1, . . . , xn−1].

P is a G-ideal by 12.13, and hence maximal by (1). P =(x1−a1, . . . , xn−1−an−1),

by induction hypothesis, therefore K[x1, . . . , xn−1]/P ≃ K , and every irreducible

polynomial of (K[x1, . . . , xn−1]/P )[xn] has the form xn−(an+P ), for some an∈K .

Applying part (2) of 12.16 to R = K[x1, . . . , xn−1], M is generated by x1 −
a1, . . . , xn−1 − an−1 and xn − an . �

12.18 Corollary. (Version of Hilbert’s Nullstellensatz) Let K be an algebraically

closed field and I EK[x1, . . . , xn]. Then
√
I is the intersection of all ideals of the

form Ma = {f ∈K[x1, . . . , xn] | f(a) = 0} (with a ∈ Kn) containing I .

12.19 Corollary. (Hilbert’s Nullstellensatz) Let K be an algebraically closed field

and n ∈ N. If f1, . . . , fm, g are polynomials in K[x1, . . . , xn] such that g(a) = 0

for all a ∈Kn for which fi(a) = 0 for 1 ≤ i ≤m then g ∈
√

(f1, . . . , fm) .

∗ ∗ ∗ classical proof of Hilbert’s Nullstellensatz ∗ ∗ ∗

12.20 Lemma. Let K ⊆ F be fields. If F = K[z1, . . . , zn] (F is generated by

z1, . . . , zn as a ring over K ) then z1, . . . , zn are algebraic over K .

Proof. Induction on n. If x is transcendental over K then the polynomial ring

K[x] is not a field (every polynomial of positive degree is a non-unit).

Now let F = K[z1, . . . , zn], n > 1. F = K(z1)[z2, . . . , zn], so by induction

hypothesis z2, . . . , zn are algebraic over K(z1). There exists an element r ∈K[z1]
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(r = g(z1) for some g ∈ K[x]) such that rz2, . . . , rzn are integral over K[z1].

Therefore, for every f ∈K[z1, . . . , zn] there exists m∈N such that rmf is integral

over K[z1]. In particular, this holds for every f ∈K(z1) ⊆ K[z1, . . . , zn].

Suppose z1 is transcendental over K . Then K[z1] is a unique factorization

domain with infinitely many irreducibles. K[z1] is integrally closed in its quotient

field K(z1). By the previous paragraph, every element of K(z1) has a representa-

tion as a fraction whose denominator is a power of a fixed polynomial g(z1). This

is false. Therefore, z1 is algebraic over K . �

12.21 Theorem. (weak Nullstellensatz) Let K be an algebraically closed field.

Then every maximal ideal of K[x1, . . . , xn] is of the form (x1 − a1, . . . , xn − an)

for some a1, . . . , an ∈K .

Proof. Let M be a maximal ideal of K[x1, . . . , xn], and F = K[x1, . . . , xn]/M

the residue field. The canonical projection π:K[x1, . . . , xn] −→K[x1, . . . , xn]/M ,

restricted to K is injective, so the elements k+M (with k∈K ) form an isomorphic

copy of K in F , and F is generated as a ring over K by the images of the xi

under π , F =K[y1, . . . , yn], with yi = xi +M .

By 12.20, y1, . . . , yn are algebraic over K . As K is algebraically closed, the

only monic irreducible polynomials in K[x] are linear, so each yi is a zero of x−ai
for some ai ∈K , i.e., (xi +M)− (ai +M) = 0+M . This implies xi − ai ∈M for

1 ≤ i ≤ n. Since the ideal generated by x1 − a1 , . . . , xn − an is maximal, it must

be M . �

A really neat argument by Rabinowitsch shows that the Nullstellensatz for n

variables follows from the weak Nullstellensatz for n+ 1 variables:

12.22 Theorem. Let K be an algebraically closed field, and f1, . . . , fm, f

polynomials in K[x1, . . . , xn] such that f(a) = 0 for every common zero a ∈ Kn

of f1, . . . , fm . Then f ∈
√

(f1, . . . , fm) .

Proof. Let f1, . . . , fm, f ∈ K[x1, . . . , xn] as in the theorem. The polynomials

f1, . . . , fm and g = 1− xn+1f in K[x1, . . . , xn+1] have no common zero in Kn+1 .

By the weak Nullstellensatz they are not contained in any maximal ideal of

K[x1, . . . , xn+1], so there exist h1, . . . , hm, h ∈ K[x1, . . . , xn+1] such that

f1h1 + . . .+ fmhm + (1− xn+1f)h = 1.

We now substitute 1/f for xn+1 and multiply both sides by f r , where r is the

maximal degree in xn+1 of any hi . This gives f1g1 + . . . + fmgm = f r , where
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g1, . . . , gm∈R[x1, . . . , xn], so f is in the radical of the ideal generated by f1, . . . , fm

in K[x1, . . . , xn]. �
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13. A little point-set topology.

∗ ∗ ∗ Open and closed sets ∗ ∗ ∗

13.1 Definition. A subset τ of the power set P(X) of a set X is called a topology

on X if the following axioms hold:

(O1) ∅ ∈ τ and X ∈ τ
(O2) S, T ∈ τ =⇒ S ∩ T ∈ τ
(O3) Si ∈ τ for all i ∈ I (I an arbitrary index set) =⇒ ⋃

i∈I Si ∈ τ
(X, τ) is then called a topological space. The members of τ are called open

sets (or τ -open sets, if several different topologies on X are being considered).

13.2 Remark: (Closed sets) If (X, τ) is a topological space, then the complements

of open sets, A = X \ S with S ∈ τ , are called closed sets. The collection of

closed sets C = {X \O | O ∈ τ} satisfies

(C1) ∅ ∈ C and X ∈ C .
(C2) A, B ∈ C =⇒ A ∪B ∈ C .
(C3) Ai ∈ C for all i ∈ I (I an arbitrary index set) =⇒ ⋂

i∈I Ai ∈ C
Conversely, if C ⊆ P(X) satisfys C1–C3, then the complements of elements of

C form a topology on X , whose closed sets are precisely the elements of C .

13.3 Example: Zariski topology on the spectrum of a ring. Let R be a commutative

ring. A topology on the spectrum of R (Spec(R) = {P | P a prime ideal of R}) is
defined by specifying its closed sets as sets of prime ideals of the form

V (I) = {P ∈ Spec(R) | P ⊇ I},

for some ideal I of R.

There’s nothing to prevent sets from being open and closed at the same time.

Sets both open and closed are often called clopen.

13.4 Definition. Let (X, τ) be a topological space.

A collection B ⊂ τ of open sets such that every open set is a union of elements

of B is called a basis of the topology τ .

A collection S ⊆ τ of open sets such that every open set is a union of finite

intersections of elements of S is called a subbasis of the topology τ .
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13.5 Remark: Topologies can be defined by specifying a basis or subbasis:

If B ⊆ P(X) is closed with respect to finite intersections, then the unions of

(arbitrarily many) members of B form a topology on X , of which B is a basis.

If S ⊆ P(X) is any collection of subsets of X , then arbitrary unions of finite

intersections of members of S form a topology on X , of which S is a subbasis.

To ensure that , X ∈ τ we rely on the conventions that a union of no sets at

all is the empty set, and an intersection of no sets in P(X) is the whole space X .

13.6 Example: Order Topology. If (X,≤) is a partially ordered set, then order

topology on X is defined by specifying “open rays”, i.e., sets of the form (a,∞)=

{x ∈X | a < x} and (−∞, b) = {x ∈ X | x < b}, for a, b ∈ X as a subbasis.

If (X,≤) is totally ordered and doesn’t have a maximal or a minimal element,

then “open intervals” (a, b) = {x ∈ X | a < x < b} form a basis of order topology.

If X is totally ordered but does have a maximal or minimal element, then open

rays of the form (a,∞), or (−∞, b), respectively, together with the open intervals

form a basis.

13.7 Definition. If (X, τ) is a topological space and Y a subset of X then Y

inherits a topological structure from X (called subspace topology) through the

convention: a subset U of Y is open (in Y ) iff there exists an open subset O of

X with U = O ∩ Y .

If Y is an open subset of X then U ⊆ Y is open in Y if and only it is open in

X ; if Y is a closed subset of X then A ⊆ Y is closed in Y if and only it is closed

in X .

13.8 Remark: If (X,≤) is a totally ordered set and Y ⊆ X , then Y inherits a

topology from the order topology of X , and at the same time Y inherits an order

relation from X which makes (Y,≤) a totally ordered set, for which order topology

may be defined. These two topologies on Y in general do not agree. (Examples

can be found among subsets of the real numbers.)

∗ ∗ ∗ Neighborhoods and neighborhood bases ∗ ∗ ∗

Perhaps a more intuitive approach to topology is through neighborhoods of a point,

which (as sets containing an open ball around the point) are already familiar from

the study of metric spaces.

13.9 Definition. (∗) Let (X, τ) be a topological space and p∈X . A neighborhood

of p is a set U such that there exists an open set O with p ∈ O ⊆ U . The set of
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all neighborhoods of a point p is called the neighborhood filter of p. We will

denote it by U(p).

13.10 Remark: Let (X, τ) be a topological space and p ∈X . The neighborhood

filter of p has the properties

(U1) ∀U ∈ U(p) p ∈ U .

(U2) U, V ∈ U(p) =⇒ U ∩ V ∈ U(p)
(U3) U ∈ U(p) and V ⊇ U =⇒ V ∈ U(p)
(U4) ∀U ∈ U(p) ∃V ∈ U(p) ∀v ∈ V U ∈ U(v).
Also,

(U) O ∈ τ ⇐⇒ ∀p ∈ O ∃U∈ U(p) U ⊆ O

Conversely, given a set X and for each p ∈ X a set U(p) ⊆ P(X) such that

U1–U4 hold, we can define a topolgy τ on X by (U), and, what is more, the

neighborhood filter of each point in the resulting topology τ is exactly the U(p)
we started out with.

As with metric spaces, it suffices to know a system of “basic” neighborhoods

of a point – with the property that every neighborhood contains one of them – to

know all neighborhoods.

13.11 Definition. Let (X, τ) be a topological space. A collection B(p) ⊆ U(p) of

neighborhoods of p is called a neighborhood basis of p if for every U ∈ U(p)
there exists B ∈ B(p) with B ⊆ U .

If (X, τ) is a topological space, and for each p ∈ X , B(p) is a neighborhood

basis, then, for every p ∈X
(B1) ∀B ∈ B(p) p ∈ B .

(B2) U, V ∈ B(p) =⇒ ∃B ∈ B(p) B ⊆ U ∩ V
(B3) ∀U ∈ B(p) ∃V ∈ B(p) ∀v ∈ V ∃B ∈ B(v) B ⊆ U ).

Also,

(B) O ∈ τ ⇐⇒ ∀p ∈ O ∃B∈ B(p) B ⊆ O

Conversely, if we are given for every p ∈ X a collection B(p) of subsets of X

satisfying B1–B3, we can define a topology on X by (B), and in this topology

B(p) will be a neighborhood basis of p.
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13.12 Definition. A topological space in which every point has a countable neigh-

borhood basis is said to satisfy the first countability axiom.

13.13 Example: Let (X, d) be a metric space, and Bε(p) = {x ∈ X | d(p, x) < ε}
(for ε > 0, p ∈X ) the open ball of radius ε around p. If we define B(p) as the set

of all Bε(p) with ε > 0, then B1–B3 hold. In other words, every metric induces a

topology in which the open ε-balls with center p form a neighborhood basis of p.

Actually, countably many balls B 1

n
(p), n ∈ N, already form a neighborhood basis

of p in this topology. We see that every metric space satisfies the first countability

axiom.

13.14 Definition. A topological space satisfies the second countability axiom

if it has a countable basis.

13.15 Example: Rn with the topology induced by Euklidean metric satisfies the

second countability axiom. Open balls of radius 1/n around points with rational

coordinates are a basis.

13.16 Definition. A topological space is separable if it has a countable dense

subset.

13.17 Exercise. Second countability axiom implies first countability axiom and

separability.

13.18 Exercise. First countability axiom and separability do not imply the second

countability axiom. (Hint: Niemitzky space)

13.19 Example: I -adic topology Let R be a commutative ring and I an ideal of

R. I -adic topology on R is defined by specifying a neighborhood base of r ∈ R:

B(r) = {r + In | n ∈ N}.

Note that these basic neighborhoods are both open and closed.

∗ ∗ ∗ Closure and interior ∗ ∗ ∗

13.20 Definition. Let A be a subset of a topological space X . The closure of A,

denoted Ā, is defined to be the intersection of all closed sets containing A.

Clearly, Ā is a closed set containing A and every closed set B that contains A

also contains Ā.

The closure operator A 7→ Ā on P(X) has the properties:
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(A1) ∅̄ = ∅.
(A2) A ⊆ Ā.

(A3) ¯̄A = Ā.

(A4) Ā ∪ B̄ = A ∪B.
Conversely, any operator A 7→ Ā on the power set of a set X with properties

A1–A4 may be used to define a topology on X by declaring the closed sets to

be precisely the sets of the form Ā for some A ∈ P(X). (To see that these sets

satisfy C3, first note that A4 implies A ⊆ C =⇒ Ā ⊆ C̄ . From this we get that
⋂

i∈I Āi ⊆ Āi for all i ∈ I , i.e.,
⋂

i∈I Āi ⊆
⋂

i∈I Āi and the reverse inclusion is just

A2.)

13.21 Definition. Let (X, τ) be a topological space and A ∈ P(X) then the open

interior (or interior for short) of A, denoted A◦ , is the union of all open sets

contained in A.

Clearly, A◦ is open and A◦ ⊆ A. Also, (X \ A)◦ = X \ Ā. (Note that the

interior of a non-empty set may be empty.)

∗ ∗ ∗ Boundry points, accumulation points and such ∗ ∗ ∗

The following properties of the closure of a set (which we defined as the

intersection of all closed sets containing it) and the interior of a set (which we

defined as the union of all open sets contained in it) are often used as definitions:

13.22 Lemma.

• Ā consists of precisely those points p ∈ X such that U ∩ A 6= ∅ for every

neighborhood U ∈ U(p) and

• A◦ consists of precisely those points p∈X such that there exists a neighborhood

U ∈ U(p) with U ⊆ A.

13.23 Definition. Let (X, τ) be a topological space, p ∈X and A ⊆X then

• p is called a boundary point of A if for every neighborhood U ∈ U(p) both

A ∩ U 6= ∅ and (X \ A) ∩ U 6= ∅. The set of all boundary points of A is the

boundary of A, denoted by δA.

• p is called an interior point of A if p∈A◦ , i.e., if there exists a neighborhood

U ∈ U(p) with U ⊆ A.

• p is called an accumulation point of A if every neighborhood of p contains

an element of A other than p.

• p is called an isolated point of A if there exists a neighborhood U of p with

U ∩A = {p}.
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Note that interior points of A and isolated points of A are necessarily in A,

while boundary points and accumulation points may or may not belong to A.

By purely logical arguments we see that every set A induces a partition of X

into three disjoint parts in two different ways (∪̇ denotes disjoint union):

(i) X = A◦ ∪̇ δA ∪̇ (X \A)◦ and

(ii) X = {isolated points of A}∪̇{accumulation points of A}∪̇(X \A)◦ .
Also,

(iii) Ā = A◦ ∪̇ δA and

(iv) Ā = {isolated points of A} ∪̇ {accumulation points of A}
The last two partitions of Ā follow from the characterization of Ā as the set

of those p such that A∩U 6= ∅ for every U ∈ U(p). They are incomparable in the

sense that all four combinations of belonging to one set of one partition and one

set of the other are possible, an accumulation point of A can be either an interior

point or a boundary point of A, etc. Also, we have seen that

(v) Ā = A ∪ δA and

(vi) Ā = A ∪ {accumulation points of A}
Unlike (iii) and (iv), the unions (v) and (vi) are in general not disjoint.

∗ ∗ ∗ Continuous functions ∗ ∗ ∗

13.24 Definition. Let (X, τ) and (Y, τ ′) be topological spaces. A function f :X→Y

is called continuous if f−1(O) is open for every open set O ⊆ Y .

13.25 Remark: Inverse image commutes with arbitrary unions and intersections

f−1(
⋃

i∈I

Si) =
⋃

i∈I

f−1(Si) and f−1(
⋂

i∈I

Si) =
⋂

i∈I

f−1(Si).

Therefore, for f :X → Y to be continuous, it suffices that f−1(O) be open for all

O in some fixed subbasis of Y . Also,

f−1(Y \ S) = X \ f−1(S).

Therefore, f :X→ Y is continuous if and only if f−1(A) is closed for every closed

set A ⊆ Y .

In terms of neighborhoods, a function f :X→Y is continuous, if and only if for

every x ∈X , for every U ∈ U(f(x)) there exists a V ∈ U(x) with f(V ) ⊆ U . The

familiar ε-δ-definition of continuous functions is easily seen to be the specialization

to metric spaces of this topological characterization.
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13.26 Definition. Let (X, τ) and (Y, τ ′) be topological spaces. A function f :X→Y

is called open if f(O) is open for every open set O ⊆X .

A bijective function both open and continuous is called a homeomorphism.

A topology τ1 on X is called stronger (or finer) than another topology τ2

on the same set X if τ1 ⊇ τ2 (every τ2-open set is τ1-open); τ2 is then called

weaker or coarser than τ1 . Two trivial topologies exist on every set X : discrete

topology τ =P(X) (the finest topology on X ) and chaotic topology τ ={∅, X}
(the coarsest topology on X ).

If τ1 and τ2 are two topologies on a set X then τ1 is stronger than τ2 iff

idX : (X, τ1)→ (X, τ2) is continuous; τ1 is weaker than τ2 iff idX : (X, τ1)→ (X, τ2)

is open.

∗ ∗ ∗ Connectedness ∗ ∗ ∗

13.27 Definition. A topological space X is connected, if, whenenver O1 and O2

are open sets with O1∪O2 =X and O1∩O2 = ∅, it follows that O1 = ∅ or O2 = ∅.
A subset Y of X is connected if it is conneced in subspace topology.

13.28 Exercise. If X is connected and f :X → Y continuous, then f(X) is

connected.

13.29 Lemma. If Xi is a connected subset of X for every i ∈ I (I an arbitrary

index set) and
⋂

i∈I Xi 6= ∅ then
⋃

i∈I Xi is connected.

Proof. Easy exercise. �

13.30 Lemma and Definition. The following relation ∼ is an equivalence relation

on X : x ∼ y if and only if there exists a connected subset C of X with x, y ∈ C .

The equivalence classes with respect to ∼ are called the connected compo-

nents of X .

From the above definition it is clear that the connected components of X form

a partition of X . Also, the component of x ∈ X is the union of all connected

subsets of X containing x, and it is therefore the unique largest connected subset

of X containing x.

13.31 Lemma. If Y is a connected subset of X then every set C with Y ⊆C⊆Y
is connected.

Proof. Exercise. �

13.32 Definition. A topological space X is locally connected if every x∈X has

a neighborhood basis consisting of connected neighborhoods.
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13.33 Lemma. The connected components of a topological space X are closed

sets. If every x ∈ X has a connected neighborhood (in particular, if X is locally

connected) then they are also open.

Proof. By the lemma above, the closure of a connected component is again con-

nected and therefore contained in the component. If a point x possesses a con-

nected open neighborhood Ux then the compoment of x (being the union of all

connected sets containing x) contains Ux . �

13.34 Definition. A topological space X is totally disconnected if it doesn’t con-

tain any connected set with more than one element; equivalently, if its connected

components are singletons.

∗ ∗ ∗ Filters ∗ ∗ ∗

13.35 Definition. Let X be a set. A filter on X is a set F ⊆ P(X) with the

properties

(1) ∅ /∈ F
(2) If A,B ∈ F then A ∩B ∈ F .

(3) If A ∈ F and X ⊇ C ⊇ A then C ∈ F .

13.36 Definition. Let F and G be filters on X . We say that F is finer than G
(or, equivalently, G is coarser than F ) if F ⊇ G .

13.37 Definition. An ultrafilter on X is a filter F with the property:

∀S ⊆ X : S ∈ F ∨ (X \ S) ∈ F .

13.38 Definition. If F is a filter on X then a subset F ′ of F is called a filter

base (or filter basis) of F if ∀F ∈ F ∃F ′ ∈ F ′ with F ′ ⊆ F . A subset S of F
is called a subbase (or subbasis) of F if the finite intersections of elements of S
constitute a filter base of F .

13.39 Remark: If F is a filter then F ′ ⊆ F is a filter base of F if and only if F
consists precisely of all supersets of elements of F ′ . We can easily give a criterion

for F ′ to be a subbasis of a filter: the intersection of any two elements of F ′ must

be non-empty and contain an element of F ′ .

We can also give a criterion for a collection of sets F ′ ⊆P(X) to be a subbasis

of a filter on X . The set of supersets of finite intersections of elements of F ′

is a filter if and only if F ′ has the finite intersection property, that is, the

intersection of any finite number of sets in F ′ is non-empty.
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13.40 Lemma. If F is a filter on X containing neither S nor X \ S , then there

exists a filter F1 ⊇ F ∪ {S} and a filter F2 ⊇ F ∪ {(X \ S)}.

Proof. No F ∈F is contained in S (otherwise S would be in F ), and likewise, no

F ∈F is contained in X \S . Therefore F ∩ (X \S) 6= ∅ for all F ∈F and F ∩S 6= ∅
for all F ∈ F . Now take F ∪ {S} as a filter base for F1 and F ∪ {(X \ S)} as a

filter base for F2 . �

13.41 Lemma. A filter is maximal with respect to refinement (i.e., inclusion) if

and only if it is an ultrafilter.

Proof. It is clear that no sets can be added to an ultrafilter without violating

proprty (1) or (2) in the definition of a filter. Conversely, 13.40 shows that a filter

that is not an ultrafilter has a proper refinement. �

13.42 Lemma. For every filter F on X there exists an ultrafilter on X finer

than F . F is the intersection of all ultrafilters on X finer than F .

Proof. Consider the set S of all filters on X containing F , ordered by inclusion.

Since the union of a chain of filters is again a filter, every chain in S has an upper

bound in S . By Zorn’s Lemma, there exists a maximal element in S , which is

an ultrafilter containing F , by 13.41. By 13.40, the intersection of all ultrafilters

containing F contains no other sets than the elements of F . �

∗ ∗ ∗ Nets ∗ ∗ ∗

13.43 Definition. A directed set is a set I With a binary relation ≤ such that

∀i, j, k ∈ I
(1) i ≤ i.

(2) if i ≤ j and j ≤ k then i ≤ k.

(3) ∃n ∈ I with n ≥ i and n ≥ j .

Note that we do not require anti-symmery.

13.44 Definition. A net in X is a function from a directed set to X , ψ: I → X ,

usually written (like a sequence) as a list of values indexed by arguments, (xi)i∈I .

13.45 Definition. Let ψ: I → X , written as (xi)i∈I , be a net in X , J a directed

set and and ϕ: J → I an increasing function that is cofinal in I , that is,

∀j, j′ ∈ J (j ≤ j′ =⇒ ϕ(j) ≤ ϕ(j′))
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∀i ∈ I ∃j ∈ J : ϕ(j) ≥ i.

Then the composition of maps ψ ◦ϕ: J →X is called a subnet of (xi)i∈I , and

is written (xij )j∈J .

13.46 Definition. Let (xi)i∈I be a net in X and S ⊆ X . We say that (xi) is

eventually in S if there exists n ∈ I such that xi ∈ S for all i ≥ n. We say that

(xi) is frequently in S, if for all n ∈ I there exists i ∈ I with i ≥ n and xi ∈ S .

13.47 Remark: A set of the form {xi | i ≥ n} for some n ∈ I is called a tail of

the net (xi)i∈I . A net is eventually in a set S if and only if some tail is contained

in S ; it is frequently in S if and only if all its tails intersect S nontrivially.

13.48 Definition. An ultranet in X is a net such that for every subset S of X ,

the net is eventually in S or eventually in X \ S .

13.49 Exercise. Let f :X→ Y be any function. If (xi)i∈I is an ultranet in X then

(f(xi))i∈I is an ultranet in Y . If F is an ultrafilter on X then {f(F ) | F ∈ F} is

an ultrafilter on f(X) and {S ⊆ Y | ∃F ∈ F : f(F ) ⊆ S} is an ultrafilter on Y .

∗ ∗ ∗ Convergence ∗ ∗ ∗

13.50 Definition. Let F be a filter on X , x∈X , and U(x) the neighborhood filter

of x.

F converges to x if and only if U(x) ⊆ F . In this case, x is called a limit

point of F .

x is a cluster point of F if and only if F ∩ U 6= ∅ for all F ∈ F and all

U ∈ U(x) (or equivalently, if x ∈ F̄ for all F ∈ F ).

13.51 Proposition. Let G ⊆ F be filters on X and x ∈ X .

(1) If G converges to x then the finer filter F converges to x.

(2) If x is a cluster point of F then x is a cluster point of the coarser filter G .

Proof. Follows immediately from the definition of filter convergence and cluster

points. �

13.52 Definition. Let x ∈X and U(x) the neighborhood filter of x.

A net in X converges to x if and only if for every U ∈ U(x), the net is

eventually in U . In this case, x is called a limit point of the net.

x is a cluster point of a net on X if and only if for every U ∈ U(x), the net

is frequently in U .
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13.53 Proposition. Let (xnk
) be a subnet of the net (xn) on X and x ∈ X . If

(xn) converges to x then the subnet (xnk
) converges to x. If x is a cluster point

of the subnet (xnk
) then x is a cluster point of (xn).

Proof. Follows immediately from the definition of subnet. �

13.54 Proposition. An ultrafilter converges against each of its cluster points.

Similarly, an ultranet converges against each of its cluster points.

Proof. Suppose F is a filter and x ∈X such that for all F ∈ F and all U ∈ U(x),
U ∩ F 6= ∅. Then for all U ∈ U(x), (X \ U) /∈ F . If F is an ultrafilter, U ∈ F for

all U ∈ U(x) follows. The case of nets is similar. �

The following constructions of a net from a filter and a filter from a net often

allow to translate statements about filters to statements about nets and vice versa:

13.55 Lemma and Definition. Let (xn)n∈N be a net on X and x ∈ X . The

filter constructed from (xn)n∈N is defined by taking the set of ends {xn | n ≥ n0}
for n0 ∈ N as a filter basis.

Then the filter constructed from (xn) converges to x if and only if (xn)

converges to x. Also, x is a cluster point of the filter constructed from (xn)

if and only if x is a cluster point of (xn).

Proof. Easy exercise. �

13.56 Lemma and Definition. Let F be a filter on X and x ∈ X . The net

constructed from F is indexed by the set I = {(F, y) | F ∈ F , y ∈ F} with

(F, y) ≥ (F ′, y′) :⇐⇒ F ⊆ F ′ ; and x(F,y) = y .

Then the net constructed from F converges to x if and only if F converges to

x. Also, x is a cluster point of the net constructed from F if and only if x is a

cluster point of F .

Proof. Easy exercise. �

13.57 Exercise. Let F be a filter on X and x∈X . For each F ∈F choose xF ∈F .

Does the net (xF )F∈F (indexed by F directed by F ′ ≥ F :⇐⇒ F ′ ⊆ F ), also

satisfy the equivalences of 13.56?
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13.58 Remark: For a filter F to converge to x ∈ X , it suffices that F contains,

for a fixed subbasis S of the topology, every Y ∈ S with x ∈ Y . Similarly, for a

net to converge to x, it suffices that it is eventually in Y for every Y ∈ S with

x ∈ Y .

Proof. Easy exercise. �

∗ ∗ ∗ Compactness ∗ ∗ ∗

13.59 Definition. Let X be a topological space and Y ⊆ X . An open cover

of Y is a set C of open sets such that Y ⊆ ⋃

O∈C O. Y is compact if every

open cover of Y admits a finite subcover, that is, there exist O1, . . . , On ∈ C with

Y ⊆ O1 ∪ . . . ∪On .

Be aware that many authors require compact sets to be Hausdorff, and call

our notion of compact “quasi-compact”.

13.60 Exercise. If X is compact and f :X→Y continuous, then f(X) is compact.

13.61 Theorem. Let X be a topoological space, and S a subbasis of the topology.

The following are equivalent:

(1) X is compact, i.e., every open cover of X has a finite subcover.

(2) Every cover of X consisting of elements of S has a finite subcover.

(3) Every ultrafilter on X converges to some x ∈X .

(4) Every filter on X has a cluster point x ∈X .

Proof. (1⇒ 2) a fortiori.

(2 ⇒ 3) Suppose the ultrafilter U doesn’t converge. For every x ∈ X choose

Ux ∈ S with x ∈ Ux and Ux /∈ U (possible by 13.58) and let Ax = X \ Ux . Then

Ax ∈ U . Also, {Ux | x ∈ X} covers X so there exists a finite set Y ⊆ X with
⋃

x∈Y Ux =X . Therefore ∅ =
⋂

x∈Y Ax ∈ U , a contradiction.

(3 ⇒ 4) By 13.42, every filter F on X can be refined to an ultrafilter. This

ultrafilter converges to some x ∈X and then x is a cluster point of F by 13.51.

(4⇒ 1) Suppose C is an open cover of X that has no finite subcover. Then we

may use {X \O |O ∈ C} as base for a filter F on X . Let x ∈X be a cluster point

of F and Ox ∈ C with x ∈Ox . Then F ∩Ox 6= ∅ for all F ∈F . But (X \Ox) ∈F ,

a contradiction. �
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13.62 Corollary. Let X be a topologial space. Let B ⊆ P(X) be a set of closed

sets such that every closed subset of X is representable as an arbitrary intersection

of finite unions of elements of B (or, equivalently, such that S = {(X \A) |A ∈ B}
is a subbasis of the topology on X ). Then the following are equivalent.

(1) X is compact.

(1’) For every set A ⊆ P(X) of closed subsets of X it is true that: if
⋂

A∈AA = ∅
then there exists a finite subset {A1, . . . , An} ⊆ A with

⋂

1≤i≤nAi = ∅.
(2’) Like (1’), but restricted to sets of closed sets A ⊆ B.
(3’) Every ultranet in X converges to some x ∈X .

(4’) Every net in X has a cluster point x ∈ X .

Proof. (1 ⇔ 1′) and (2 ⇔ 2′) by de Morgan. (3 ⇔ 3′) and (4 ⇔ 4′) by 13.55 and

13.56. �

13.63 Exercise. If X is Hausdorff, then we can separate disjoint compact sets

C1, C2 by open sets, i.e., there are open sets O1, O2 such that C1 ⊆ O1 , C2 ⊆ O2

and O1 ∩O2 = ∅. (First show that we can separate a compact set C from a point

x ∈X \ C by open sets.)

13.64 Exercise.

(i) Every closed subset of a compact space is compact.

(ii) If X is Hausdorff, then every compact subset of X is closed.

∗ ∗ ∗ Product topology ∗ ∗ ∗

13.65 Definition. For i ∈ I (an arbitrary index set) let Xi be a topological space.

Product topology on the cartesian product
∏

i∈I Xi is defined by a subbasis

consisting of all sets of the form

S(j, Oj) = {(xi)i∈I ∈
∏

i∈I

Xi | xj ∈ Oj},

for some j ∈ I , and some Oj open ⊆ Xj . (Equivalently, the sets Oj could be

restriced to members of a given basis or subbasis of the topology of Xj .)

Remark: the finer topology on
∏

i∈I Xi given by the basis

B = {
∏

i∈I

Oi | ∀i Oi open ⊆Xi}

is called box topology.

Note that the projections pj : (
∏

i∈I Xi)→Xj , pj((xi)i∈I)=xj , are continuous,

both for product topology and for box topology.

77



13.66 Proposition. A net (xλ)λ∈Λ in X =
∏

i∈I Xi converges to y = (yi)i∈I in

product topology, if and only if for every i ∈ I , its projection to Xi , (pi(xλ))λ∈Λ

converges to yi in Xi .

Proof. Easy exercise. �

13.67 Theorem. (Tychonoff) X =
∏

i∈I Xi (with product topology) is compact

if and only if each Xi is compact.

Proof. Easy direction: if
∏

i∈I Xi is compact, then for each i, Xi is compact

as the image of
∏

i∈I Xi under the projection onto the i-th coordinate, which

is continuous. Conversely, to show compactness of X =
∏

i∈I Xi , consider an

ultranet on X . The projection to the i-the coordinate is an ultranet on Xi , which

converges, since Xi is compact. As all coordinates of the ultranet converge, the

ultranet itself converges. �

We give another proof of Tychonoff’s theorem using a different criterion for

compactness.

Proof. Easy direction: if
∏

i∈I Xi is compact and C is an open cover of Xi , then

{S(i, O) | O ∈ C} is an open cover of X , which has a finite subcover S(i, O1),. . .,

S(i, On). Clearly, O1 ,. . ., On cover Xi and constitute a finite subcover of C .
Now assuming compactness of each Xi , to show compactness of X =

∏

i∈I Xi ,

consider a cover C by subbasis elements S(i, O). There must be some coordinate

j ∈ I such that the open sets O occurring in sets S(j, O)∈C cover Xj . (Otherwise,

by the axiom of choice, there would be a point (xi)i∈I such that for all i, xi is

in none of the sets O with S(i, O) ∈ C , and therefore (xi)i∈I is not covered by

C .) As Xj is compact, there is a finite cover of Xj by open sets O1, . . .On with

S(j, Ok) ∈ C . Clearly then S(j, O1), . . ., S(j, On) cover X . �
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